Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer

  1. Yusuke Inoue
  2. Ana Nikolic
  3. Dylan Farnsworth
  4. Rocky Shi
  5. Fraser D Johnson
  6. Alvin Liu
  7. Marc Ladanyi
  8. Romel Somwar
  9. Marco Gallo
  10. William W Lockwood  Is a corresponding author
  1. British Columbia Cancer Agency, Canada
  2. University of Calgary, Canada
  3. Memorial Sloan-Kettering Cancer Center, United States

Abstract

Small-cell lung cancer (SCLC) is neuroendocrine in origin and rarely contains mutations in the MAPK pathway. Likewise, non-SCLC (NSCLC) that transform to SCLC concomitantly with development of therapy resistance downregulate MAPK signaling, suggesting an inverse relationship between pathway activation and lineage state. To test this, we activated MAPK in SCLC through expression of mutant KRAS or EGFR, which revealed suppression of the neuroendocrine differentiation via ERK. We found that ERK induces expression of ETS factors that mediate transformation into a NSCLC-like state. ATAC-seq demonstrated ERK-driven changes in chromatin accessibility at putative regulatory regions and global chromatin rewiring at neuroendocrine and ETS transcriptional targets. Further, induction of ETS factors and suppression of neuroendocrine differentiation were dependent on histone acetyltransferases CBP/p300. Overall, we describe how the ERK-CBP/p300-ETS axis promotes a lineage shift between neuroendocrine and non-neuroendocrine phenotypes and provide rationale for the disruption of this program during transformation-driven resistance to targeted therapy.

Data availability

Gene expression data has been deposited to GEO under the accession code GSE160482. ATAC seq data has been deposited to GEO under the accession code GSE160204

The following data sets were generated

Article and author information

Author details

  1. Yusuke Inoue

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8075-0597
  2. Ana Nikolic

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Dylan Farnsworth

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2402-159X
  4. Rocky Shi

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Fraser D Johnson

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Alvin Liu

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Marc Ladanyi

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Romel Somwar

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Marco Gallo

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. William W Lockwood

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    For correspondence
    wlockwood@bccrc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9831-3408

Funding

Canadian Institutes of Health Research (PJT-148725)

  • William W Lockwood

Michael Smith Foundation for Health Research (Scholar Award)

  • William W Lockwood

Canadian Institutes of Health Research (New Investigator Award)

  • William W Lockwood

British Columbia Lung Association (Research Grant)

  • Yusuke Inoue
  • William W Lockwood

Terry Fox Research Institute (New Investigator Award)

  • William W Lockwood

Canadian Institutes of Health Research (PJT-156278)

  • Marco Gallo

Canada Research Chairs (Brain Cancer Epigenomics (Tier 2))

  • Marco Gallo

Alberta Health Services (Clinician Investigator Program fellowship)

  • Ana Nikolic

Alberta Innovates (Fellowship)

  • Ana Nikolic

Japanese Respiratory Society (Lilly Oncology Fellowship Program Award)

  • Yusuke Inoue

Michael Smith Foundation for Health Research (Fellowship)

  • Yusuke Inoue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Inoue et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,244
    views
  • 558
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yusuke Inoue
  2. Ana Nikolic
  3. Dylan Farnsworth
  4. Rocky Shi
  5. Fraser D Johnson
  6. Alvin Liu
  7. Marc Ladanyi
  8. Romel Somwar
  9. Marco Gallo
  10. William W Lockwood
(2021)
Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer
eLife 10:e66524.
https://doi.org/10.7554/eLife.66524

Share this article

https://doi.org/10.7554/eLife.66524

Further reading

    1. Cancer Biology
    2. Cell Biology
    Zijing Wang, Bihan Xia ... Jilin Yang
    Research Article

    Bestrophin isoform 4 (BEST4) is a newly identified subtype of the calcium-activated chloride channel family. Analysis of colonic epithelial cell diversity by single-cell RNA-sequencing has revealed the existence of a cluster of BEST4+ mature colonocytes in humans. However, if the role of BEST4 is involved in regulating tumour progression remains largely unknown. In this study, we demonstrate that BEST4 overexpression attenuates cell proliferation, colony formation, and mobility in colorectal cancer (CRC) in vitro, and impedes the tumour growth and the liver metastasis in vivo. BEST4 is co-expressed with hairy/enhancer of split 4 (HES4) in the nucleus of cells, and HES4 signals BEST4 by interacting with the upstream region of the BEST4 promoter. BEST4 is epistatic to HES4 and downregulates TWIST1, thereby inhibiting epithelial-to-mesenchymal transition (EMT) in CRC. Conversely, knockout of BEST4 using CRISPR/Cas9 in CRC cells revitalises tumour growth and induces EMT. Furthermore, the low level of the BEST4 mRNA is correlated with advanced and the worse prognosis, suggesting its potential role involving CRC progression.

    1. Cancer Biology
    Bruno Bockorny, Lakshmi Muthuswamy ... Senthil K Muthuswamy
    Tools and Resources

    Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using ‘liquid biopsies’ offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.