Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer

  1. Yusuke Inoue
  2. Ana Nikolic
  3. Dylan Farnsworth
  4. Rocky Shi
  5. Fraser D Johnson
  6. Alvin Liu
  7. Marc Ladanyi
  8. Romel Somwar
  9. Marco Gallo
  10. William W Lockwood  Is a corresponding author
  1. British Columbia Cancer Agency, Canada
  2. University of Calgary, Canada
  3. Memorial Sloan-Kettering Cancer Center, United States

Abstract

Lineage transformation between lung cancer subtypes is a poorly understood phenomenon associated with resistance to treatment and poor patient outcomes. Here, we aimed to model this transition to define underlying biological mechanisms and identify potential avenues for therapeutic intervention. Small cell lung cancer (SCLC) is neuroendocrine in identity and, in contrast to non-SCLC (NSCLC), rarely contains mutations that drive the MAPK pathway. Likewise, NSCLCs that transform to SCLC concomitantly with development of therapy resistance downregulate MAPK signaling, suggesting an inverse relationship between pathway activation and lineage state. To test this, we activated MAPK in SCLC through conditional expression of mutant KRAS or EGFR, which revealed suppression of the neuroendocrine differentiation program via ERK. We found that ERK induces the expression of ETS factors that mediate transformation into a NSCLC-like state. ATAC-seq demonstrated ERK-driven changes in chromatin accessibility at putative regulatory regions and global chromatin rewiring at neuroendocrine and ETS transcriptional targets. Further, ERK-mediated induction of ETS factors as well as suppression of neuroendocrine differentiation were dependent on histone acetyltransferase activities of CBP/p300. Overall, we describe how the ERK-CBP/p300-ETS axis promotes a lineage shift between neuroendocrine and non-neuroendocrine lung cancer phenotypes and provide rationale for the disruption of this program during transformation-driven resistance to targeted therapy.

Data availability

Gene expression data has been deposited to GEO under the accession code GSE160482. ATAC seq data has been deposited to GEO under the accession code GSE160204

The following data sets were generated

Article and author information

Author details

  1. Yusuke Inoue

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8075-0597
  2. Ana Nikolic

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Dylan Farnsworth

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2402-159X
  4. Rocky Shi

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Fraser D Johnson

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Alvin Liu

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Marc Ladanyi

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Romel Somwar

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Marco Gallo

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. William W Lockwood

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    For correspondence
    wlockwood@bccrc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9831-3408

Funding

Canadian Institutes of Health Research (PJT-148725)

  • William W Lockwood

Michael Smith Foundation for Health Research (Scholar Award)

  • William W Lockwood

Canadian Institutes of Health Research (New Investigator Award)

  • William W Lockwood

British Columbia Lung Association (Research Grant)

  • Yusuke Inoue
  • William W Lockwood

Terry Fox Research Institute (New Investigator Award)

  • William W Lockwood

Canadian Institutes of Health Research (PJT-156278)

  • Marco Gallo

Canada Research Chairs (Brain Cancer Epigenomics (Tier 2))

  • Marco Gallo

Alberta Health Services (Clinician Investigator Program fellowship)

  • Ana Nikolic

Alberta Innovates (Fellowship)

  • Ana Nikolic

Japanese Respiratory Society (Lilly Oncology Fellowship Program Award)

  • Yusuke Inoue

Michael Smith Foundation for Health Research (Fellowship)

  • Yusuke Inoue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maureen E Murphy, The Wistar Institute, United States

Version history

  1. Received: January 13, 2021
  2. Accepted: June 11, 2021
  3. Accepted Manuscript published: June 14, 2021 (version 1)
  4. Accepted Manuscript updated: June 18, 2021 (version 2)
  5. Version of Record published: August 4, 2021 (version 3)

Copyright

© 2021, Inoue et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,907
    views
  • 521
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yusuke Inoue
  2. Ana Nikolic
  3. Dylan Farnsworth
  4. Rocky Shi
  5. Fraser D Johnson
  6. Alvin Liu
  7. Marc Ladanyi
  8. Romel Somwar
  9. Marco Gallo
  10. William W Lockwood
(2021)
Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer
eLife 10:e66524.
https://doi.org/10.7554/eLife.66524

Share this article

https://doi.org/10.7554/eLife.66524

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.

    1. Cancer Biology
    2. Cell Biology
    Julian J A Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article

    Collective cell migration is fundamental for the development of organisms and in the adult, for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during rat Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell-surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective Schwann cell migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased Schwann cell collective migration and increased clustering of Schwann cells within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.