Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer

  1. Yusuke Inoue
  2. Ana Nikolic
  3. Dylan Farnsworth
  4. Rocky Shi
  5. Fraser D Johnson
  6. Alvin Liu
  7. Marc Ladanyi
  8. Romel Somwar
  9. Marco Gallo
  10. William W Lockwood  Is a corresponding author
  1. British Columbia Cancer Agency, Canada
  2. University of Calgary, Canada
  3. Memorial Sloan-Kettering Cancer Center, United States

Abstract

Lineage transformation between lung cancer subtypes is a poorly understood phenomenon associated with resistance to treatment and poor patient outcomes. Here, we aimed to model this transition to define underlying biological mechanisms and identify potential avenues for therapeutic intervention. Small cell lung cancer (SCLC) is neuroendocrine in identity and, in contrast to non-SCLC (NSCLC), rarely contains mutations that drive the MAPK pathway. Likewise, NSCLCs that transform to SCLC concomitantly with development of therapy resistance downregulate MAPK signaling, suggesting an inverse relationship between pathway activation and lineage state. To test this, we activated MAPK in SCLC through conditional expression of mutant KRAS or EGFR, which revealed suppression of the neuroendocrine differentiation program via ERK. We found that ERK induces the expression of ETS factors that mediate transformation into a NSCLC-like state. ATAC-seq demonstrated ERK-driven changes in chromatin accessibility at putative regulatory regions and global chromatin rewiring at neuroendocrine and ETS transcriptional targets. Further, ERK-mediated induction of ETS factors as well as suppression of neuroendocrine differentiation were dependent on histone acetyltransferase activities of CBP/p300. Overall, we describe how the ERK-CBP/p300-ETS axis promotes a lineage shift between neuroendocrine and non-neuroendocrine lung cancer phenotypes and provide rationale for the disruption of this program during transformation-driven resistance to targeted therapy.

Data availability

Gene expression data has been deposited to GEO under the accession code GSE160482. ATAC seq data has been deposited to GEO under the accession code GSE160204

The following data sets were generated

Article and author information

Author details

  1. Yusuke Inoue

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8075-0597
  2. Ana Nikolic

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Dylan Farnsworth

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2402-159X
  4. Rocky Shi

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Fraser D Johnson

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Alvin Liu

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Marc Ladanyi

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Romel Somwar

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Marco Gallo

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. William W Lockwood

    Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
    For correspondence
    wlockwood@bccrc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9831-3408

Funding

Canadian Institutes of Health Research (PJT-148725)

  • William W Lockwood

Michael Smith Foundation for Health Research (Scholar Award)

  • William W Lockwood

Canadian Institutes of Health Research (New Investigator Award)

  • William W Lockwood

British Columbia Lung Association (Research Grant)

  • Yusuke Inoue
  • William W Lockwood

Terry Fox Research Institute (New Investigator Award)

  • William W Lockwood

Canadian Institutes of Health Research (PJT-156278)

  • Marco Gallo

Canada Research Chairs (Brain Cancer Epigenomics (Tier 2))

  • Marco Gallo

Alberta Health Services (Clinician Investigator Program fellowship)

  • Ana Nikolic

Alberta Innovates (Fellowship)

  • Ana Nikolic

Japanese Respiratory Society (Lilly Oncology Fellowship Program Award)

  • Yusuke Inoue

Michael Smith Foundation for Health Research (Fellowship)

  • Yusuke Inoue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Inoue et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,316
    views
  • 560
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yusuke Inoue
  2. Ana Nikolic
  3. Dylan Farnsworth
  4. Rocky Shi
  5. Fraser D Johnson
  6. Alvin Liu
  7. Marc Ladanyi
  8. Romel Somwar
  9. Marco Gallo
  10. William W Lockwood
(2021)
Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer
eLife 10:e66524.
https://doi.org/10.7554/eLife.66524

Share this article

https://doi.org/10.7554/eLife.66524

Further reading

    1. Cancer Biology
    Ke Ning, Yuanyuan Xie ... Ling Yu
    Research Article

    For traditional laboratory microscopy observation, the multi-dimensional, real-time, in situ observation of three-dimensional (3D) tumor spheroids has always been the pain point in cell spheroid observation. In this study, we designed a side-view observation petri dish/device that reflects light, enabling in situ observation of the 3D morphology of cell spheroids using conventional inverted laboratory microscopes. We used a 3D-printed handle and frame to support a first-surface mirror, positioning the device within a cell culture petri dish to image cell spheroid samples. The imaging conditions, such as the distance between the mirror and the 3D spheroids, the light source, and the impact of the culture medium, were systematically studied to validate the in situ side-view observation. The results proved that placing the surface mirror adjacent to the spheroids enables non-destructive in situ real-time tracking of tumor spheroid formation, migration, and fusion dynamics. The correlation between spheroid thickness and dark core appearance under light microscopy and the therapeutic effects of chemotherapy doxorubicin and natural killer cells on spheroids’ 3D structure was investigated.

    1. Cancer Biology
    Ismail M Meraz, Mourad Majidi ... Jack A Roth
    Research Article

    Expression of NPRL2/TUSC4, a tumor-suppressor gene, is reduced in many cancers including NSCLC. Restoration of NPRL2 induces DNA damage, apoptosis, and cell-cycle arrest. We investigated NPRL2 antitumor immune responses in aPD1R/KRAS/STK11mt NSCLC in humanized-mice. Humanized-mice were generated by transplanting fresh human cord blood-derived CD34 stem cells into sub-lethally irradiated NSG mice. Lung-metastases were developed from KRAS/STK11mt/aPD1R A549 cells and treated with NPRL2 w/wo pembrolizumab. NPRL2-treatment reduced lung metastases significantly, whereas pembrolizumab was ineffective. Antitumor effect was greater in humanized than non-humanized-mice. NPRL2 + pembrolizumab was not synergistic in KRAS/STK11mt/aPD1R tumors but was synergistic in KRASwt/aPD1S H1299. NPRL2 also showed a significant antitumor effect on KRASmt/aPD1R LLC2 syngeneic-tumors. The antitumor effect was correlated with increased infiltration of human cytotoxic-T, HLA-DR+DC, CD11c+DC, and downregulation of myeloid and regulatory-T cells in TME. Antitumor effect was abolished upon in-vivo depletion of CD8-T, macrophages, and CD4-T cells whereas remained unaffected upon NK-cell depletion. A distinctive protein-expression profile was found after NPRL2 treatment. IFNγ, CD8b, and TBX21 associated with T-cell functions were significantly increased, whereas FOXP3, TGFB1/B2, and IL-10RA were strongly inhibited by NPRL2. A list of T-cell co-inhibitory molecules was also downregulated. Restoration of NPRL2 exhibited significantly slower tumor growth in humanized-mice, which was associated with increased presence of human cytotoxic-T, and DC and decreased percentage of Treg, MDSC, and TAM in TME. NPRL2-stable cells showed a substantial increase in colony-formation inhibition and heightened sensitivity to carboplatin. Stable-expression of NPRL2 resulted in the downregulation of MAPK and AKT-mTOR signaling. Taken-together, NPRL2 gene-therapy induces antitumor activity on KRAS/STK11mt/aPD1R tumors through DC-mediated antigen-presentation and cytotoxic immune-cell activation.