Impact of COVID-19-related disruptions to measles, meningococcal A, and yellow fever vaccination in 10 countries

  1. Katy A M Gaythorpe
  2. Kaja Abbas
  3. John Huber
  4. Andromachi Karachaliou
  5. Niket Thakkar
  6. Kim Woodruff
  7. Xiang Li
  8. Susy Echeverria-Londono
  9. Matthew Ferrari
  10. Michael Jackson
  11. Kevin McCarthy
  12. Alex T Perkins
  13. Caroline Trotter
  14. Mark Jit  Is a corresponding author
  1. Imperial College London, Switzerland
  2. London School of Hygiene & Tropical Medicine, United Kingdom
  3. University of Notre Dame, France
  4. University of Cambridge, United Kingdom
  5. Institute for Disease Modelling, United States
  6. Imperial College London, United Kingdom
  7. Pennsylvania State University, United States
  8. Kaiser Permanente Washington,, United States
  9. University of Notre Dame, United States

Abstract

Background: Childhood immunisation services have been disrupted by COVID-19. WHO recommends considering outbreak risk using epidemiological criteria when deciding whether to conduct preventive vaccination campaigns during the pandemic.

Methods: We used 2-3 models per infection to estimate the health impact of 50% reduced routine vaccination coverage and delaying campaign vaccination for measles, meningococcal A and yellow fever vaccination in 3-6 high burden countries per infection.

Results: Reduced routine coverage in 2020 without catch-up vaccination may increase measles and yellow fever disease burden in the modelled countries. Delaying planned campaigns may lead to measles outbreaks and increases in yellow fever burden in some countries. For meningococcal A vaccination, short term disruptions in 2020 are unlikely to have a significant impact.

Conclusion: The impact of COVID-19-related disruption to vaccination programs varies between infections and countries.

Funding: Bill and Melinda Gates Foundation and Gavi, the Vaccine Alliance.

Data availability

All code, data inputs and outputs used to generate the results in the manuscript (apart from projections about vaccine coverage beyond 2020 which are commercially confidential property of Gavi) are available at: https://github.com/vimc/vpd-covid-phase-I.

Article and author information

Author details

  1. Katy A M Gaythorpe

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3734-9081
  2. Kaja Abbas

    Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. John Huber

    University of Notre Dame, Notre Dame, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5245-5187
  4. Andromachi Karachaliou

    Department of Vetinary Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Niket Thakkar

    Institute for Disease Modelling, Institute for Disease Modelling, Seattle, United States
    Competing interests
    Niket Thakkar, KM is an employee of the Institute for Disease Modeling at the Bill & Melinda Gates Foundation, which funded the research..
  6. Kim Woodruff

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Xiang Li

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  8. Susy Echeverria-Londono

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Matthew Ferrari

    Department of Biology, Pennsylvania State University, University Park, United States
    Competing interests
    No competing interests declared.
  10. Michael Jackson

    Kaiser Permanente Washington,, Seattle, United States
    Competing interests
    Michael Jackson, KM is an employee of the Institute for Disease Modeling at the Bill & Melinda Gates Foundation, which funded the research..
  11. Kevin McCarthy

    Institute for Disease Modelling, Institute for Disease Modelling, Seattle, United States
    Competing interests
    No competing interests declared.
  12. Alex T Perkins

    University of Notre Dame, Notre Dame, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7518-4014
  13. Caroline Trotter

    Department of Vetinary Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    Caroline Trotter, CT declares a consultancy fee from GSK in 2018 (unrelated to the submitted work)..
  14. Mark Jit

    Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
    For correspondence
    Mark.Jit@lshtm.ac.uk
    Competing interests
    Mark Jit, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6658-8255

Funding

Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation (OPP1157270 and INV-016832)

  • Katy A M Gaythorpe
  • Kaja Abbas
  • John Huber
  • Andromachi Karachaliou
  • Niket Thakkar
  • Kim Woodruff
  • Xiang Li
  • Susy Echeverria-Londono
  • Matthew Ferrari
  • Michael Jackson
  • Kevin McCarthy
  • Alex T Perkins
  • Caroline Trotter
  • Mark Jit

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Gaythorpe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,881
    views
  • 385
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katy A M Gaythorpe
  2. Kaja Abbas
  3. John Huber
  4. Andromachi Karachaliou
  5. Niket Thakkar
  6. Kim Woodruff
  7. Xiang Li
  8. Susy Echeverria-Londono
  9. Matthew Ferrari
  10. Michael Jackson
  11. Kevin McCarthy
  12. Alex T Perkins
  13. Caroline Trotter
  14. Mark Jit
(2021)
Impact of COVID-19-related disruptions to measles, meningococcal A, and yellow fever vaccination in 10 countries
eLife 10:e67023.
https://doi.org/10.7554/eLife.67023

Share this article

https://doi.org/10.7554/eLife.67023

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Felix Lankester, Tito J Kibona ... Sarah Cleaveland
    Research Article

    Lack of data on the aetiology of livestock diseases constrains effective interventions to improve livelihoods, food security and public health. Livestock abortion is an important disease syndrome affecting productivity and public health. Several pathogens are associated with livestock abortions but across Africa surveillance data rarely include information from abortions, little is known about aetiology and impacts, and data are not available to inform interventions. This paper describes outcomes from a surveillance platform established in Tanzania spanning pastoral, agropastoral and smallholder systems to investigate causes and impacts of livestock abortion. Abortion events were reported by farmers to livestock field officers (LFO) and on to investigation teams. Events were included if the research team or LFO could attend within 72 hr. If so, samples and questionnaire data were collected to investigate (a) determinants of attribution; (b) patterns of events, including species and breed, previous abortion history, and seasonality; (c) determinants of reporting, investigation and attribution; (d) cases involving zoonotic pathogens. Between 2017–2019, 215 events in cattle (n=71), sheep (n=44), and goats (n=100) were investigated. Attribution, achieved for 19.5% of cases, was significantly affected by delays in obtaining samples. Histopathology proved less useful than PCR due to rapid deterioration of samples. Vaginal swabs provided practical and sensitive material for pathogen detection. Livestock abortion surveillance, even at a small scale, can generate valuable information on causes of disease outbreaks, reproductive losses and can identify pathogens not easily captured through other forms of livestock disease surveillance. This study demonstrated the feasibility of establishing a surveillance system, achieved through engagement of community-based field officers, establishment of practical sample collection and application of molecular diagnostic platforms.

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.