Impact of COVID-19-related disruptions to measles, meningococcal A, and yellow fever vaccination in 10 countries

  1. Katy A M Gaythorpe
  2. Kaja Abbas
  3. John Huber
  4. Andromachi Karachaliou
  5. Niket Thakkar
  6. Kim Woodruff
  7. Xiang Li
  8. Susy Echeverria-Londono
  9. Matthew Ferrari
  10. Michael Jackson
  11. Kevin McCarthy
  12. Alex T Perkins
  13. Caroline Trotter
  14. Mark Jit  Is a corresponding author
  1. Imperial College London, Switzerland
  2. London School of Hygiene & Tropical Medicine, United Kingdom
  3. University of Notre Dame, France
  4. University of Cambridge, United Kingdom
  5. Institute for Disease Modelling, United States
  6. Imperial College London, United Kingdom
  7. Pennsylvania State University, United States
  8. Kaiser Permanente Washington,, United States
  9. University of Notre Dame, United States

Abstract

Background: Childhood immunisation services have been disrupted by COVID-19. WHO recommends considering outbreak risk using epidemiological criteria when deciding whether to conduct preventive vaccination campaigns during the pandemic.

Methods: We used 2-3 models per infection to estimate the health impact of 50% reduced routine vaccination coverage and delaying campaign vaccination for measles, meningococcal A and yellow fever vaccination in 3-6 high burden countries per infection.

Results: Reduced routine coverage in 2020 without catch-up vaccination may increase measles and yellow fever disease burden in the modelled countries. Delaying planned campaigns may lead to measles outbreaks and increases in yellow fever burden in some countries. For meningococcal A vaccination, short term disruptions in 2020 are unlikely to have a significant impact.

Conclusion: The impact of COVID-19-related disruption to vaccination programs varies between infections and countries.

Funding: Bill and Melinda Gates Foundation and Gavi, the Vaccine Alliance.

Data availability

All code, data inputs and outputs used to generate the results in the manuscript (apart from projections about vaccine coverage beyond 2020 which are commercially confidential property of Gavi) are available at: https://github.com/vimc/vpd-covid-phase-I.

Article and author information

Author details

  1. Katy A M Gaythorpe

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3734-9081
  2. Kaja Abbas

    Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. John Huber

    University of Notre Dame, Notre Dame, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5245-5187
  4. Andromachi Karachaliou

    Department of Vetinary Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Niket Thakkar

    Institute for Disease Modelling, Institute for Disease Modelling, Seattle, United States
    Competing interests
    Niket Thakkar, KM is an employee of the Institute for Disease Modeling at the Bill & Melinda Gates Foundation, which funded the research..
  6. Kim Woodruff

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Xiang Li

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  8. Susy Echeverria-Londono

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Matthew Ferrari

    Department of Biology, Pennsylvania State University, University Park, United States
    Competing interests
    No competing interests declared.
  10. Michael Jackson

    Kaiser Permanente Washington,, Seattle, United States
    Competing interests
    Michael Jackson, KM is an employee of the Institute for Disease Modeling at the Bill & Melinda Gates Foundation, which funded the research..
  11. Kevin McCarthy

    Institute for Disease Modelling, Institute for Disease Modelling, Seattle, United States
    Competing interests
    No competing interests declared.
  12. Alex T Perkins

    University of Notre Dame, Notre Dame, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7518-4014
  13. Caroline Trotter

    Department of Vetinary Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    Caroline Trotter, CT declares a consultancy fee from GSK in 2018 (unrelated to the submitted work)..
  14. Mark Jit

    Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
    For correspondence
    Mark.Jit@lshtm.ac.uk
    Competing interests
    Mark Jit, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6658-8255

Funding

Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation (OPP1157270 and INV-016832)

  • Katy A M Gaythorpe
  • Kaja Abbas
  • John Huber
  • Andromachi Karachaliou
  • Niket Thakkar
  • Kim Woodruff
  • Xiang Li
  • Susy Echeverria-Londono
  • Matthew Ferrari
  • Michael Jackson
  • Kevin McCarthy
  • Alex T Perkins
  • Caroline Trotter
  • Mark Jit

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Gaythorpe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,915
    views
  • 395
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katy A M Gaythorpe
  2. Kaja Abbas
  3. John Huber
  4. Andromachi Karachaliou
  5. Niket Thakkar
  6. Kim Woodruff
  7. Xiang Li
  8. Susy Echeverria-Londono
  9. Matthew Ferrari
  10. Michael Jackson
  11. Kevin McCarthy
  12. Alex T Perkins
  13. Caroline Trotter
  14. Mark Jit
(2021)
Impact of COVID-19-related disruptions to measles, meningococcal A, and yellow fever vaccination in 10 countries
eLife 10:e67023.
https://doi.org/10.7554/eLife.67023

Share this article

https://doi.org/10.7554/eLife.67023

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Bo Zheng, Bronner P Gonçalves ... Caoyi Xue
    Research Article

    Background:

    In many settings, a large fraction of the population has both been vaccinated against and infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, quantifying the protection provided by post-infection vaccination has become critical for policy. We aimed to estimate the protective effect against SARS-CoV-2 reinfection of an additional vaccine dose after an initial Omicron variant infection.

    Methods:

    We report a retrospective, population-based cohort study performed in Shanghai, China, using electronic databases with information on SARS-CoV-2 infections and vaccination history. We compared reinfection incidence by post-infection vaccination status in individuals initially infected during the April–May 2022 Omicron variant surge in Shanghai and who had been vaccinated before that period. Cox models were fit to estimate adjusted hazard ratios (aHRs).

    Results:

    275,896 individuals were diagnosed with real-time polymerase chain reaction-confirmed SARS-CoV-2 infection in April–May 2022; 199,312/275,896 were included in analyses on the effect of a post-infection vaccine dose. Post-infection vaccination provided protection against reinfection (aHR 0.82; 95% confidence interval 0.79–0.85). For patients who had received one, two, or three vaccine doses before their first infection, hazard ratios for the post-infection vaccination effect were 0.84 (0.76–0.93), 0.87 (0.83–0.90), and 0.96 (0.74–1.23), respectively. Post-infection vaccination within 30 and 90 days before the second Omicron wave provided different degrees of protection (in aHR): 0.51 (0.44–0.58) and 0.67 (0.61–0.74), respectively. Moreover, for all vaccine types, but to different extents, a post-infection dose given to individuals who were fully vaccinated before first infection was protective.

    Conclusions:

    In previously vaccinated and infected individuals, an additional vaccine dose provided protection against Omicron variant reinfection. These observations will inform future policy decisions on COVID-19 vaccination in China and other countries.

    Funding:

    This study was funded the Key Discipline Program of Pudong New Area Health System (PWZxk2022-25), the Development and Application of Intelligent Epidemic Surveillance and AI Analysis System (21002411400), the Shanghai Public Health System Construction (GWVI-11.2-XD08), the Shanghai Health Commission Key Disciplines (GWVI-11.1-02), the Shanghai Health Commission Clinical Research Program (20214Y0020), the Shanghai Natural Science Foundation (22ZR1414600), and the Shanghai Young Health Talents Program (2022YQ076).

    1. Epidemiology and Global Health
    Marina Padilha, Victor Nahuel Keller ... Gilberto Kac
    Research Article Updated

    Background:

    The role of circulating metabolites on child development is understudied. We investigated associations between children’s serum metabolome and early childhood development (ECD).

    Methods:

    Untargeted metabolomics was performed on serum samples of 5004 children aged 6–59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children’s milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥1. The interaction between significant metabolites and the child’s age was tested.

    Results:

    Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child’s nutritional status, diet quality, and infant age. Cresol sulfate (β=–0.07; adjusted-p <0.001), hippuric acid (β=–0.06; adjusted-p <0.001), phenylacetylglutamine (β=–0.06; adjusted-p <0.001), and trimethylamine-N-oxide (β=–0.05; adjusted-p=0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged –1 SD: β=–0.05; pP=0.01;+1 SD: β=0.05; p=0.02) and methylhistidine (–1 SD: β = - 0.04; p=0.04;+1 SD: β=0.04; p=0.03).

    Conclusions:

    Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.

    Funding:

    Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.