Impact of COVID-19-related disruptions to measles, meningococcal A, and yellow fever vaccination in 10 countries

  1. Katy A M Gaythorpe
  2. Kaja Abbas
  3. John Huber
  4. Andromachi Karachaliou
  5. Niket Thakkar
  6. Kim Woodruff
  7. Xiang Li
  8. Susy Echeverria-Londono
  9. VIMC Working Group on COVID-19 Impact on Vaccine Preventable Disease
  10. Matthew Ferrari
  11. Michael Jackson
  12. Kevin McCarthy
  13. T Alex Perkins
  14. Caroline Trotter
  15. Mark Jit  Is a corresponding author
  1. Imperial College London, Switzerland
  2. London School of Hygiene & Tropical Medicine, United Kingdom
  3. University of Notre Dame, France
  4. University of Cambridge, United Kingdom
  5. Institute for Disease Modelling, United States
  6. Imperial College London, United Kingdom
  7. Pennsylvania State University, United States
  8. Kaiser Permanente Washington,, United States
  9. University of Notre Dame, United States

Abstract

Background: Childhood immunisation services have been disrupted by COVID-19. WHO recommends considering outbreak risk using epidemiological criteria when deciding whether to conduct preventive vaccination campaigns during the pandemic.

Methods: We used 2-3 models per infection to estimate the health impact of 50% reduced routine vaccination coverage and delaying campaign vaccination for measles, meningococcal A and yellow fever vaccination in 3-6 high burden countries per infection.

Results: Reduced routine coverage in 2020 without catch-up vaccination may increase measles and yellow fever disease burden in the modelled countries. Delaying planned campaigns may lead to measles outbreaks and increases in yellow fever burden in some countries. For meningococcal A vaccination, short term disruptions in 2020 are unlikely to have a significant impact.

Conclusion: The impact of COVID-19-related disruption to vaccination programs varies between infections and countries.

Funding: Bill and Melinda Gates Foundation and Gavi, the Vaccine Alliance.

Data availability

All code, data inputs and outputs used to generate the results in the manuscript (apart from projections about vaccine coverage beyond 2020 which are commercially confidential property of Gavi) are available at: https://github.com/vimc/vpd-covid-phase-I.

Article and author information

Author details

  1. Katy A M Gaythorpe

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3734-9081
  2. Kaja Abbas

    Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. John Huber

    University of Notre Dame, Notre Dame, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5245-5187
  4. Andromachi Karachaliou

    Department of Vetinary Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Niket Thakkar

    Institute for Disease Modelling, Institute for Disease Modelling, Seattle, United States
    Competing interests
    Niket Thakkar, KM is an employee of the Institute for Disease Modeling at the Bill & Melinda Gates Foundation, which funded the research..
  6. Kim Woodruff

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Xiang Li

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  8. Susy Echeverria-Londono

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. VIMC Working Group on COVID-19 Impact on Vaccine Preventable Disease

  10. Matthew Ferrari

    Department of Biology, Pennsylvania State University, University Park, United States
    Competing interests
    No competing interests declared.
  11. Michael Jackson

    Kaiser Permanente Washington,, Seattle, United States
    Competing interests
    Michael Jackson, KM is an employee of the Institute for Disease Modeling at the Bill & Melinda Gates Foundation, which funded the research..
  12. Kevin McCarthy

    Institute for Disease Modelling, Institute for Disease Modelling, Seattle, United States
    Competing interests
    No competing interests declared.
  13. T Alex Perkins

    University of Notre Dame, Notre Dame, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7518-4014
  14. Caroline Trotter

    Department of Vetinary Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    Caroline Trotter, CT declares a consultancy fee from GSK in 2018 (unrelated to the submitted work)..
  15. Mark Jit

    Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
    For correspondence
    Mark.Jit@lshtm.ac.uk
    Competing interests
    Mark Jit, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6658-8255

Funding

Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation (OPP1157270 and INV-016832)

  • Katy A M Gaythorpe
  • Kaja Abbas
  • John Huber
  • Andromachi Karachaliou
  • Niket Thakkar
  • Kim Woodruff
  • Xiang Li
  • Susy Echeverria-Londono
  • Matthew Ferrari
  • Michael Jackson
  • Kevin McCarthy
  • Alex T Perkins
  • Caroline Trotter
  • Mark Jit

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Talía Malagón, McGill University, Canada

Version history

  1. Received: January 29, 2021
  2. Accepted: June 23, 2021
  3. Accepted Manuscript published: June 24, 2021 (version 1)
  4. Accepted Manuscript updated: June 25, 2021 (version 2)
  5. Version of Record published: July 7, 2021 (version 3)
  6. Version of Record updated: July 20, 2021 (version 4)

Copyright

© 2021, Gaythorpe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,714
    Page views
  • 364
    Downloads
  • 45
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katy A M Gaythorpe
  2. Kaja Abbas
  3. John Huber
  4. Andromachi Karachaliou
  5. Niket Thakkar
  6. Kim Woodruff
  7. Xiang Li
  8. Susy Echeverria-Londono
  9. VIMC Working Group on COVID-19 Impact on Vaccine Preventable Disease
  10. Matthew Ferrari
  11. Michael Jackson
  12. Kevin McCarthy
  13. T Alex Perkins
  14. Caroline Trotter
  15. Mark Jit
(2021)
Impact of COVID-19-related disruptions to measles, meningococcal A, and yellow fever vaccination in 10 countries
eLife 10:e67023.
https://doi.org/10.7554/eLife.67023

Share this article

https://doi.org/10.7554/eLife.67023

Further reading

    1. Ecology
    2. Epidemiology and Global Health
    Aleksandra Kovacevic, David RM Smith ... Lulla Opatowski
    Research Article

    Non-pharmaceutical interventions implemented to block SARS-CoV-2 transmission in early 2020 led to global reductions in the incidence of invasive pneumococcal disease (IPD). By contrast, most European countries reported an increase in antibiotic resistance among invasive Streptococcus pneumoniae isolates from 2019 to 2020, while an increasing number of studies reported stable pneumococcal carriage prevalence over the same period. To disentangle the impacts of the COVID-19 pandemic on pneumococcal epidemiology in the community setting, we propose a mathematical model formalizing simultaneous transmission of SARS-CoV-2 and antibiotic-sensitive and -resistant strains of S. pneumoniae. To test hypotheses underlying these trends five mechanisms were built into the model and examined: (1) a population-wide reduction of antibiotic prescriptions in the community, (2) lockdown effect on pneumococcal transmission, (3) a reduced risk of developing an IPD due to the absence of common respiratory viruses, (4) community azithromycin use in COVID-19 infected individuals, (5) and a longer carriage duration of antibiotic-resistant pneumococcal strains. Among 31 possible pandemic scenarios involving mechanisms individually or in combination, model simulations surprisingly identified only two scenarios that reproduced the reported trends in the general population. They included factors (1), (3), and (4). These scenarios replicated a nearly 50% reduction in annual IPD, and an increase in antibiotic resistance from 20% to 22%, all while maintaining a relatively stable pneumococcal carriage. Exploring further, higher SARS-CoV-2 R0 values and synergistic within-host virus-bacteria interaction mechanisms could have additionally contributed to the observed antibiotic resistance increase. Our work demonstrates the utility of the mathematical modeling approach in unraveling the complex effects of the COVID-19 pandemic responses on AMR dynamics.

    1. Epidemiology and Global Health
    Olivera Djuric, Elisabetta Larosa ... The Reggio Emilia Covid-19 Working Group
    Research Article

    Background:

    The aim of our study was to test the hypothesis that the community contact tracing strategy of testing contacts in households immediately instead of at the end of quarantine had an impact on the transmission of SARS-CoV-2 in schools in Reggio Emilia Province.

    Methods:

    We analysed surveillance data on notification of COVID-19 cases in schools between 1 September 2020 and 4 April 2021. We have applied a mediation analysis that allows for interaction between the intervention (before/after period) and the mediator.

    Results:

    Median tracing delay decreased from 7 to 3.1 days and the percentage of the known infection source increased from 34–54.8% (incident rate ratio-IRR 1.61 1.40–1.86). Implementation of prompt contact tracing was associated with a 10% decrease in the number of secondary cases (excess relative risk –0.1 95% CI –0.35–0.15). Knowing the source of infection of the index case led to a decrease in secondary transmission (IRR 0.75 95% CI 0.63–0.91) while the decrease in tracing delay was associated with decreased risk of secondary cases (1/IRR 0.97 95% CI 0.94–1.01 per one day of delay). The direct effect of the intervention accounted for the 29% decrease in the number of secondary cases (excess relative risk –0.29 95%–0.61 to 0.03).

    Conclusions:

    Prompt contact testing in the community reduces the time of contact tracing and increases the ability to identify the source of infection in school outbreaks. Although there are strong reasons for thinking it is a causal link, observed differences can be also due to differences in the force of infection and to other control measures put in place.

    Funding:

    This project was carried out with the technical and financial support of the Italian Ministry of Health – CCM 2020 and Ricerca Corrente Annual Program 2023.