Rotational dynamics in motor cortex are consistent with a feedback controller

  1. Hari Teja Kalidindi
  2. Kevin P Cross  Is a corresponding author
  3. Timothy P Lillicrap
  4. Mohsen Omrani
  5. Egidio Falotico
  6. Philip N Sabes
  7. Stephen H Scott
  1. Scuola Superiore Sant'Anna, Italy
  2. Queen's University, Canada
  3. University College London, United Kingdom
  4. University of California, San Francisco, United States

Abstract

Recent studies have identified rotational dynamics in motor cortex (MC) which many assume arise from intrinsic connections in MC. However, behavioural and neurophysiological studies suggest that MC behaves like a feedback controller where continuous sensory feedback and interactions with other brain areas contribute substantially to MC processing. We investigated these apparently conflicting theories by building recurrent neural networks that controlled a model arm and received sensory feedback from the limb. Networks were trained to counteract perturbations to the limb and to reach towards spatial targets. Network activities and sensory feedback signals to the network exhibited rotational structure even when the recurrent connections were removed. Furthermore, neural recordings in monkeys performing similar tasks also exhibited rotational structure not only in MC but also in somatosensory cortex. Our results argue that rotational structure may also reflect dynamics throughout the voluntary motor system involved in online control of motor actions.

Data availability

Upon publication the neural network code will be made publicly available athttps://github.com/Hteja/CorticalDynamics. Data and analysis code will be made publicly available at https://github.com/kevincross/CorticalDynamicsAnalysis.

The following previously published data sets were used

Article and author information

Author details

  1. Hari Teja Kalidindi

    The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2634-7953
  2. Kevin P Cross

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    For correspondence
    13kc18@queensu.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9820-1043
  3. Timothy P Lillicrap

    Centre for Computation, Mathematics and Physics, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Mohsen Omrani

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0461-1947
  5. Egidio Falotico

    The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
    Competing interests
    No competing interests declared.
  6. Philip N Sabes

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8397-6225
  7. Stephen H Scott

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    Stephen H Scott, Co-founder and CSO of Kinarm which commercializes the robotic technology used in the present study..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8821-1843

Funding

Canadian Institutes of Health Research (PJT-159559)

  • Stephen H Scott

European Union's Horizon 2020 Framework Programme for Research and Innovation (785907 (Human Brain Project SGA2))

  • Egidio Falotico

European Union's Horizon 2020 Framework Programme for Research and Innovation (945539 (Human Brain Project SGA3).)

  • Egidio Falotico

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Studies were approved by the Queen's University Research Ethics Board and Animal Care Committee (#Scott-2010-035)

Copyright

© 2021, Kalidindi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,469
    views
  • 676
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hari Teja Kalidindi
  2. Kevin P Cross
  3. Timothy P Lillicrap
  4. Mohsen Omrani
  5. Egidio Falotico
  6. Philip N Sabes
  7. Stephen H Scott
(2021)
Rotational dynamics in motor cortex are consistent with a feedback controller
eLife 10:e67256.
https://doi.org/10.7554/eLife.67256

Share this article

https://doi.org/10.7554/eLife.67256

Further reading

    1. Computational and Systems Biology
    Harlan P Stevens, Carly V Winegar ... Stephen R Piccolo
    Research Article

    To help maximize the impact of scientific journal articles, authors must ensure that article figures are accessible to people with color-vision deficiencies (CVDs), which affect up to 8% of males and 0.5% of females. We evaluated images published in biology- and medicine-oriented research articles between 2012 and 2022. Most included at least one color contrast that could be problematic for people with deuteranopia (‘deuteranopes’), the most common form of CVD. However, spatial distances and within-image labels frequently mitigated potential problems. Initially, we reviewed 4964 images from eLife, comparing each against a simulated version that approximated how it might appear to deuteranopes. We identified 636 (12.8%) images that we determined would be difficult for deuteranopes to interpret. Our findings suggest that the frequency of this problem has decreased over time and that articles from cell-oriented disciplines were most often problematic. We used machine learning to automate the identification of problematic images. For a hold-out test set from eLife (n=879), a convolutional neural network classified the images with an area under the precision-recall curve of 0.75. The same network classified images from PubMed Central (n=1191) with an area under the precision-recall curve of 0.39. We created a Web application (https://bioapps.byu.edu/colorblind_image_tester); users can upload images, view simulated versions, and obtain predictions. Our findings shed new light on the frequency and nature of scientific images that may be problematic for deuteranopes and motivate additional efforts to increase accessibility.

    1. Computational and Systems Biology
    Matthew Millard, David W Franklin, Walter Herzog
    Research Article

    The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.