Rotational dynamics in motor cortex are consistent with a feedback controller

  1. Hari Teja Kalidindi
  2. Kevin P Cross  Is a corresponding author
  3. Timothy P Lillicrap
  4. Mohsen Omrani
  5. Egidio Falotico
  6. Philip N Sabes
  7. Stephen H Scott
  1. Scuola Superiore Sant'Anna, Italy
  2. Queen's University, Canada
  3. University College London, United Kingdom
  4. University of California, San Francisco, United States

Abstract

Recent studies have identified rotational dynamics in motor cortex (MC) which many assume arise from intrinsic connections in MC. However, behavioural and neurophysiological studies suggest that MC behaves like a feedback controller where continuous sensory feedback and interactions with other brain areas contribute substantially to MC processing. We investigated these apparently conflicting theories by building recurrent neural networks that controlled a model arm and received sensory feedback from the limb. Networks were trained to counteract perturbations to the limb and to reach towards spatial targets. Network activities and sensory feedback signals to the network exhibited rotational structure even when the recurrent connections were removed. Furthermore, neural recordings in monkeys performing similar tasks also exhibited rotational structure not only in MC but also in somatosensory cortex. Our results argue that rotational structure may also reflect dynamics throughout the voluntary motor system involved in online control of motor actions.

Data availability

Upon publication the neural network code will be made publicly available athttps://github.com/Hteja/CorticalDynamics. Data and analysis code will be made publicly available at https://github.com/kevincross/CorticalDynamicsAnalysis.

The following previously published data sets were used

Article and author information

Author details

  1. Hari Teja Kalidindi

    The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2634-7953
  2. Kevin P Cross

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    For correspondence
    13kc18@queensu.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9820-1043
  3. Timothy P Lillicrap

    Centre for Computation, Mathematics and Physics, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Mohsen Omrani

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0461-1947
  5. Egidio Falotico

    The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
    Competing interests
    No competing interests declared.
  6. Philip N Sabes

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8397-6225
  7. Stephen H Scott

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    Stephen H Scott, Co-founder and CSO of Kinarm which commercializes the robotic technology used in the present study..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8821-1843

Funding

Canadian Institutes of Health Research (PJT-159559)

  • Stephen H Scott

European Union's Horizon 2020 Framework Programme for Research and Innovation (785907 (Human Brain Project SGA2))

  • Egidio Falotico

European Union's Horizon 2020 Framework Programme for Research and Innovation (945539 (Human Brain Project SGA3).)

  • Egidio Falotico

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Studies were approved by the Queen's University Research Ethics Board and Animal Care Committee (#Scott-2010-035)

Copyright

© 2021, Kalidindi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,430
    views
  • 671
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hari Teja Kalidindi
  2. Kevin P Cross
  3. Timothy P Lillicrap
  4. Mohsen Omrani
  5. Egidio Falotico
  6. Philip N Sabes
  7. Stephen H Scott
(2021)
Rotational dynamics in motor cortex are consistent with a feedback controller
eLife 10:e67256.
https://doi.org/10.7554/eLife.67256

Share this article

https://doi.org/10.7554/eLife.67256

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Natanael Spisak, Gabriel Athènes ... Aleksandra M Walczak
    Tools and Resources

    B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution and dynamics. We present HILARy (High-precision Inference of Lineages in Antibody Repertoires), an efficient, fast and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and 𝑑𝑁∕𝑑𝑆 ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.