Rotational dynamics in motor cortex are consistent with a feedback controller

  1. Hari Teja Kalidindi
  2. Kevin P Cross  Is a corresponding author
  3. Timothy P Lillicrap
  4. Mohsen Omrani
  5. Egidio Falotico
  6. Philip N Sabes
  7. Stephen H Scott
  1. Scuola Superiore Sant'Anna, Italy
  2. Queen's University, Canada
  3. University College London, United Kingdom
  4. University of California, San Francisco, United States

Abstract

Recent studies have identified rotational dynamics in motor cortex (MC) which many assume arise from intrinsic connections in MC. However, behavioural and neurophysiological studies suggest that MC behaves like a feedback controller where continuous sensory feedback and interactions with other brain areas contribute substantially to MC processing. We investigated these apparently conflicting theories by building recurrent neural networks that controlled a model arm and received sensory feedback from the limb. Networks were trained to counteract perturbations to the limb and to reach towards spatial targets. Network activities and sensory feedback signals to the network exhibited rotational structure even when the recurrent connections were removed. Furthermore, neural recordings in monkeys performing similar tasks also exhibited rotational structure not only in MC but also in somatosensory cortex. Our results argue that rotational structure may also reflect dynamics throughout the voluntary motor system involved in online control of motor actions.

Data availability

Upon publication the neural network code will be made publicly available athttps://github.com/Hteja/CorticalDynamics. Data and analysis code will be made publicly available at https://github.com/kevincross/CorticalDynamicsAnalysis.

The following previously published data sets were used

Article and author information

Author details

  1. Hari Teja Kalidindi

    The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2634-7953
  2. Kevin P Cross

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    For correspondence
    13kc18@queensu.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9820-1043
  3. Timothy P Lillicrap

    Centre for Computation, Mathematics and Physics, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Mohsen Omrani

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0461-1947
  5. Egidio Falotico

    The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
    Competing interests
    No competing interests declared.
  6. Philip N Sabes

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8397-6225
  7. Stephen H Scott

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    Stephen H Scott, Co-founder and CSO of Kinarm which commercializes the robotic technology used in the present study..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8821-1843

Funding

Canadian Institutes of Health Research (PJT-159559)

  • Stephen H Scott

European Union's Horizon 2020 Framework Programme for Research and Innovation (785907 (Human Brain Project SGA2))

  • Egidio Falotico

European Union's Horizon 2020 Framework Programme for Research and Innovation (945539 (Human Brain Project SGA3).)

  • Egidio Falotico

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Studies were approved by the Queen's University Research Ethics Board and Animal Care Committee (#Scott-2010-035)

Copyright

© 2021, Kalidindi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,636
    views
  • 712
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hari Teja Kalidindi
  2. Kevin P Cross
  3. Timothy P Lillicrap
  4. Mohsen Omrani
  5. Egidio Falotico
  6. Philip N Sabes
  7. Stephen H Scott
(2021)
Rotational dynamics in motor cortex are consistent with a feedback controller
eLife 10:e67256.
https://doi.org/10.7554/eLife.67256

Share this article

https://doi.org/10.7554/eLife.67256

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Daniel Hui, Scott Dudek ... Marylyn D Ritchie
    Research Article

    Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.