Quarantine: Should I stay or should I go?
The COVID-19 pandemic started just over a year ago, so there is a good chance that you have been in quarantine because you or one of your family, friends or colleagues tested positive for SARS-CoV-2. But how long should a person stay in quarantine before they can safely mix with others without posing a threat? Many countries implemented a 14 day quarantine period during the first wave of the pandemic, but it turned out that adherence to quarantine declined towards the end of this period (CDC, 2021; ECDC, 2020; Quilty et al., 2021; Steens et al., 2020). In many cases, this was because people could not afford to miss work for such a long time (Wright et al., 2020). If large numbers of people need to quarantine, this will impact productivity and be costly for the economy. At the same time, it is not clear that longer quarantines actually prevent many new infections. Because of this, many countries shortened their quarantines to ten days, and some allow release even earlier if individuals test negative before that time.
But, what is the optimal duration of quarantine that still ensures an effective control of SARS-CoV-2 transmission, while minimizing the individual and societal impact? Now, in eLife, Peter Ashcroft (ETH Zurich), Sebastian Bonhoeffer (ETH) and colleagues – Sonja Lehtinen (ETH), Daniel Angst (ETH) and Nicola Low (University of Bern) – report how they have used mathematical modelling to address this question (Ashcroft et al., 2021).
Based on estimated distributions of the time between a person getting infected and them infecting another person with COVID-19, the incubation period, and the infectivity of the virus, Ashcroft et al. quantified the impact of isolation and quarantine on onward transmission for index cases (the first identified case within a cluster) and their contacts. Index cases are identified through testing either when the individual develops symptoms, or when they return from travel from a country with high risk and get tested regardless of symptoms on entering their home country.
In the first case, knowing the distribution of incubation periods provides information about the possible time of infection and, therefore, the length of time an index case has had to infect others. For travellers, this information is less precise because it is harder to determine when they were infected, which will depend on the duration of travel and on how likely they are to have been exposed to infectious people in the country they travelled to. The analysis by Ashcroft et al. relies on estimating what proportion of onward transmissions could be prevented by various quarantine strategies.
At this point, Ashcroft et al. are faced with some arbitrariness in how to deal with optimizing a quarantine strategy that has several objectives (Denysiuk et al., 2015). On the one hand, reducing the spread of infection (the longer the quarantine is, the fewer onward infections), on the other, minimizing the societal and psychological consequences of quarantine. Ashcroft et al. manage this problem by using a utility function that measures the proportion of transmissions prevented per extra day of quarantine, merging the two aspects that need to be optimized. However, this is just one of several possible ways to handle the task, and it is not clear that it is the best approach.
Furthermore, Ashcroft et al. may be underestimating the effect of quarantine, since they are only counting the number of prevented direct infections, but not the people these prevented infectees would otherwise be infecting. In regions where the virus is highly prevalent, these infection chains might overlap, and affect the net number of prevented cases. Even if the utility ratio were the best approach to optimize a quarantine strategy, this ratio will depend on the state of the epidemic.
Ashcroft et al.’s results have implications for how to best balance public health needs with societal interests of reducing the costs of quarantine. First, the delay between exposure of an index case and isolation and quarantine of their contacts should be minimized in order to prevent as much onward transmission as possible. Second, quarantine periods of less than five days after exposure are not effective, but effectiveness hardly increases after ten days of quarantine. Between these bounds, the optimal quarantine duration lies between six and eight days, with contacts being released if they test negative after that time (Figure 1). This strategy would decrease the load on society by reducing the number of people in quarantine at the same time, and likely lead to higher adherence to quarantine measures. To further reduce the probability of transmission after release from quarantine, the timing of testing should also be optimized (Wells et al., 2021).
The analysis reported by Ashcroft et al. assumes that quarantine is complete in the sense that as long as a person is in quarantine, onward transmission is prevented completely. In practice, this will often not be the case, as people live in households with others, where they may not be able to avoid contact and transmission. Therefore, quarantine needs to be extended to the people who live with the contacts of an infected person, meaning that the costs incurred by quarantine depend on household size and other factors that determine how well quarantine can be implemented in practice. There is no question, however, that a test-and-release strategy, preferably using rapid tests with high sensitivity, can help to combine control of the pandemic with societal acceptance of the measure.
These results emphasize the impact of implementing widespread, low-threshold testing strategies. Additionally, they underline the importance of clearly communicating that people do not need to stay in quarantine longer than necessary, but that there is an evidence-based strategy behind their having to stay home (Smith et al., 2020; Webster et al., 2020). It will be possible to go out again, but not too early. The virus can tell us when the time has come.
References
-
Multiobjective approach to optimal control for a tuberculosis modelOptimization Methods and Software 30:893–910.https://doi.org/10.1080/10556788.2014.994704
-
Quarantine and testing strategies in contact tracing for SARS-CoV-2: a modelling studyThe Lancet Public Health 6:e175–e183.https://doi.org/10.1016/S2468-2667(20)30308-X
-
Optimal COVID-19 quarantine and testing strategiesNature Communications 12:356.https://doi.org/10.1038/s41467-020-20742-8
Article and author information
Author details
Publication history
Copyright
© 2021, Kretzschmar and Müller
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,032
- views
-
- 64
- downloads
-
- 2
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
- Genetics and Genomics
Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.
-
- Epidemiology and Global Health
Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.