Quarantine: Should I stay or should I go?

Analysing the characteristics of the SARS-CoV-2 virus makes it possible to estimate the length of quarantine that reduces the impact on society and the economy, while minimising infections.
  1. Mirjam Kretzschmar  Is a corresponding author
  2. Johannes Müller
  1. University Medical Center Utrecht, Utrecht University, Netherlands
  2. Department of Mathematics, Technical University of Munich, Germany
  3. Institute for Computational Biology, Helmholtz Center Munich, Germany

The COVID-19 pandemic started just over a year ago, so there is a good chance that you have been in quarantine because you or one of your family, friends or colleagues tested positive for SARS-CoV-2. But how long should a person stay in quarantine before they can safely mix with others without posing a threat? Many countries implemented a 14 day quarantine period during the first wave of the pandemic, but it turned out that adherence to quarantine declined towards the end of this period (CDC, 2021; ECDC, 2020; Quilty et al., 2021; Steens et al., 2020). In many cases, this was because people could not afford to miss work for such a long time (Wright et al., 2020). If large numbers of people need to quarantine, this will impact productivity and be costly for the economy. At the same time, it is not clear that longer quarantines actually prevent many new infections. Because of this, many countries shortened their quarantines to ten days, and some allow release even earlier if individuals test negative before that time.

But, what is the optimal duration of quarantine that still ensures an effective control of SARS-CoV-2 transmission, while minimizing the individual and societal impact? Now, in eLife, Peter Ashcroft (ETH Zurich), Sebastian Bonhoeffer (ETH) and colleagues – Sonja Lehtinen (ETH), Daniel Angst (ETH) and Nicola Low (University of Bern) – report how they have used mathematical modelling to address this question (Ashcroft et al., 2021).

Based on estimated distributions of the time between a person getting infected and them infecting another person with COVID-19, the incubation period, and the infectivity of the virus, Ashcroft et al. quantified the impact of isolation and quarantine on onward transmission for index cases (the first identified case within a cluster) and their contacts. Index cases are identified through testing either when the individual develops symptoms, or when they return from travel from a country with high risk and get tested regardless of symptoms on entering their home country.

In the first case, knowing the distribution of incubation periods provides information about the possible time of infection and, therefore, the length of time an index case has had to infect others. For travellers, this information is less precise because it is harder to determine when they were infected, which will depend on the duration of travel and on how likely they are to have been exposed to infectious people in the country they travelled to. The analysis by Ashcroft et al. relies on estimating what proportion of onward transmissions could be prevented by various quarantine strategies.

At this point, Ashcroft et al. are faced with some arbitrariness in how to deal with optimizing a quarantine strategy that has several objectives (Denysiuk et al., 2015). On the one hand, reducing the spread of infection (the longer the quarantine is, the fewer onward infections), on the other, minimizing the societal and psychological consequences of quarantine. Ashcroft et al. manage this problem by using a utility function that measures the proportion of transmissions prevented per extra day of quarantine, merging the two aspects that need to be optimized. However, this is just one of several possible ways to handle the task, and it is not clear that it is the best approach.

Furthermore, Ashcroft et al. may be underestimating the effect of quarantine, since they are only counting the number of prevented direct infections, but not the people these prevented infectees would otherwise be infecting. In regions where the virus is highly prevalent, these infection chains might overlap, and affect the net number of prevented cases. Even if the utility ratio were the best approach to optimize a quarantine strategy, this ratio will depend on the state of the epidemic.

Ashcroft et al.’s results have implications for how to best balance public health needs with societal interests of reducing the costs of quarantine. First, the delay between exposure of an index case and isolation and quarantine of their contacts should be minimized in order to prevent as much onward transmission as possible. Second, quarantine periods of less than five days after exposure are not effective, but effectiveness hardly increases after ten days of quarantine. Between these bounds, the optimal quarantine duration lies between six and eight days, with contacts being released if they test negative after that time (Figure 1). This strategy would decrease the load on society by reducing the number of people in quarantine at the same time, and likely lead to higher adherence to quarantine measures. To further reduce the probability of transmission after release from quarantine, the timing of testing should also be optimized (Wells et al., 2021).

Costs versus benefits of quarantine depending on time.

The costs of quarantine (yellow bars and arrow) increase steadily with time, while the benefits (green arrow) – measured as number of onward transmissions (red bars) prevented – increase steeply at first, and then flatten. Ashcroft et al. estimate that balance between costs and benefits – known as the utility (blue arrow) – increases at first, reaching a peak after 6–8 days, and then decreases.

The analysis reported by Ashcroft et al. assumes that quarantine is complete in the sense that as long as a person is in quarantine, onward transmission is prevented completely. In practice, this will often not be the case, as people live in households with others, where they may not be able to avoid contact and transmission. Therefore, quarantine needs to be extended to the people who live with the contacts of an infected person, meaning that the costs incurred by quarantine depend on household size and other factors that determine how well quarantine can be implemented in practice. There is no question, however, that a test-and-release strategy, preferably using rapid tests with high sensitivity, can help to combine control of the pandemic with societal acceptance of the measure.

These results emphasize the impact of implementing widespread, low-threshold testing strategies. Additionally, they underline the importance of clearly communicating that people do not need to stay in quarantine longer than necessary, but that there is an evidence-based strategy behind their having to stay home (Smith et al., 2020; Webster et al., 2020). It will be possible to go out again, but not too early. The virus can tell us when the time has come.

References

Article and author information

Author details

  1. Mirjam Kretzschmar

    Mirjam Kretzschmar is in the University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands

    For correspondence
    M.E.E.Kretzschmar@umcutrecht.nl
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4394-7697
  2. Johannes Müller

    Johannes Müller is in the Department of Mathematics, Technical University of Munich, Garching, Germany, and the Institute for Computational Biology, Helmholtz Center Munich, Neuhenberg, Germany

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5892-8598

Publication history

  1. Version of Record published: March 16, 2021 (version 1)

Copyright

© 2021, Kretzschmar and Müller

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 967
    Page views
  • 63
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mirjam Kretzschmar
  2. Johannes Müller
(2021)
Quarantine: Should I stay or should I go?
eLife 10:e67417.
https://doi.org/10.7554/eLife.67417
  1. Further reading

Further reading

    1. Epidemiology and Global Health
    Tina Bech Olesen, Henry Jensen ... Morten Rasmussen
    Research Article

    Background: Worldwide, most colorectal cancer screening programmes were paused at the start of the COVID-19 pandemic, whilst the Danish faecal immunochemical test (FIT)-based programme continued without pausing. We examined colorectal cancer screening participation and compliance with subsequent colonoscopy in Denmark throughout the pandemic.

    Methods: We used data from the Danish Colorectal Cancer Screening Database among individuals aged 50-74 years old invited to participate in colorectal cancer screening from 2018-2021 combined with population-wide registries. Using a generalised linear model, we estimated prevalence ratios (PR) and 95% confidence intervals (CI) of colorectal cancer screening participation within 90 days since invitation and compliance with colonoscopy within 60 days since a positive FIT test during the pandemic in comparison with the previous years adjusting for age, month and year of invitation.

    Results: Altogether, 3,133,947 invitations were sent out to 1,928,725 individuals and there were 94,373 positive FIT tests (in 92,848 individuals) during the study period. Before the pandemic, 60.7% participated in screening within 90 days. A minor reduction in participation was observed at the start of the pandemic (PR=0.95; 95% CI: 0.94-0.96 in pre-lockdown and PR=0.85; 95% CI: 0.85-0.86 in 1st lockdown) corresponding to a participation rate of 54.9% during pre-lockdown and 53.0% during 1st lockdown. This was followed by a 5-10% increased participation in screening corresponding to a participation rate of up to 64.9%. The largest increase in participation was observed among 55-59 year olds and among immigrants. The compliance with colonoscopy within 60 days was 89.9% before the pandemic. A slight reduction was observed during 1st lockdown (PR=0.96; 95% CI: 0.93-0.98), where after it resumed to normal levels.

    Conclusions: Participation in the Danish FIT-based colorectal cancer screening programme and subsequent compliance to colonoscopy after a positive FIT result was only slightly affected by the COVID-19 pandemic.

    Funding: The study was funded by the Danish Cancer Society Scientific Committee (grant number R321-A17417) and the Danish regions.

    1. Epidemiology and Global Health
    2. Medicine
    Nathan J Cheetham, Milla Kibble ... Claire J Steves
    Research Article

    Background: SARS-CoV-2 antibody levels can be used to assess humoral immune responses following SARS-CoV-2 infection or vaccination, and may predict risk of future infection. Higher levels of SARS-CoV-2 anti-Spike antibodies are known to be associated with increased protection against future SARS-CoV-2 infection. However, variation in antibody levels and risk factors for lower antibody levels following each round of SARS-CoV-2 vaccination have not been explored across a wide range of socio-demographic, SARS-CoV-2 infection and vaccination, and health factors within population-based cohorts.

    Methods: Samples were collected from 9,361 individuals from TwinsUK and ALSPAC UK population-based longitudinal studies and tested for SARS-CoV-2 antibodies. Cross-sectional sampling was undertaken jointly in April-May 2021 (TwinsUK, N = 4,256; ALSPAC, N = 4,622), and in TwinsUK only in November 2021-January 2022 (N = 3,575). Variation in antibody levels after first, second, and third SARS-CoV-2 vaccination with health, socio-demographic, SARS-CoV-2 infection and SARS-CoV-2 vaccination variables were analysed. Using multivariable logistic regression models, we tested associations between antibody levels following vaccination and: (1) SARS-CoV-2 infection following vaccination(s); (2) health, socio-demographic, SARS-CoV-2 infection and SARS-CoV-2 vaccination variables.

    Results: Within TwinsUK, single-vaccinated individuals with the lowest 20% of anti-Spike antibody levels at initial testing had 3-fold greater odds of SARS-CoV-2 infection over the next six to nine months (OR = 2.9, 95% CI: 1.4, 6.0), compared to the top 20%. In TwinsUK and ALSPAC, individuals identified as at increased risk of COVID-19 complication through the UK 'Shielded Patient List' had consistently greater odds (2- to 4-fold) of having antibody levels in the lowest 10%. Third vaccination increased absolute antibody levels for almost all individuals, and reduced relative disparities compared with earlier vaccinations.

    Conclusions: These findings quantify the association between antibody level and risk of subsequent infection, and support a policy of triple vaccination for the generation of protective antibodies.

    Funding: Antibody testing was funded by UK Health Security Agency. The National Core Studies program is funded by COVID-19 Longitudinal Health and Wellbeing - National Core Study (LHW-NCS) HMT/UKRI/MRC (MC_PC_20030 & MC_PC_20059). Related funding was also provided by the NIHR 606 (CONVALESCENCE grant COV-LT-0009). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC.