HIV-1 Infection: You can keep your coat on
Viruses are pathogens that rely on hosts to produce multiple copies of themselves. Retroviruses, such as HIV-1, have a unique way of integrating their genes into the DNA of a host cell. Since their genetic information is stored as RNA, a retrovirus must first undergo a process called reverse transcription. This process, which is catalyzed by an enzyme called reverse transcriptase, is followed by a second step called integration (catalyzed by integrase), which results in the viral DNA being inserted into the genome of the host cell. Although the mechanical functions of these two enzymes are well understood, relatively little is known about the transition between reverse transcription and integration during HIV-1 infection.
Much of the research into these processes has centered on the capsid protein, which self-associates to form a honeycomb-like container that surrounds the genetic material inside the retrovirus (Bedwell and Engelman, 2021). Once the retrovirus has entered a cell, the capsid container protects the RNA and the two enzymes from the antiviral molecular machinery in the cell cytoplasm, allowing reverse transcription to proceed without interruption (Yamashita and Engelman, 2017). At the same time, various cellular proteins bind to the outside of the capsid in order to facilitate it being trafficked to the nucleus, where the DNA of the host cell resides.
Once reverse transcription has been completed, the capsid is degraded to release the viral DNA from its protective container. Until recently, it was assumed that this process – which is called uncoating – might be a prerequisite for the viral DNA to enter the nucleus because it was thought that the HIV-1 capsid was too large to pass through the nuclear pore complex (which is the doorway through which biomolecules pass to enter the nucleus; Yamashita and Engelman, 2017; Arhel et al., 2007; Francis and Melikyan, 2018). However, recent studies have found evidence for capsid lattices or intact capsid-like structures inside the nucleus (Burdick et al., 2020; Dharan et al., 2020; Selyutina et al., 2020), with one study even suggesting that the intact capsid is able to pass through the nuclear pore complex (Zila et al., 2021; Figure 1). Now, in eLife, Hans-Georg Kräusslich and colleagues at the University Hospital Heidelberg and the German Center for Infection Research – including Thorsten Müller as first author – report new details on the timing, localization and mechanism of HIV-1 uncoating (Müller et al., 2021).
Müller et al. used different fluorescent labels to identify distinct events during HIV-1 replication. The ANCHOR labeling system – which employs a fluorescently labeled bacterial protein to bind a specific DNA sequence engineered into the HIV-1 genome – enabled them to distinguish between the initial reverse-transcription products made comparatively early during infection, and the more complete, double-stranded DNA that is accessible only after uncoating has happened. Müller et al. also tagged the incoming virus with a fluorescently labeled integrase protein in order to study the kinetics of uncoating. These experiments revealed that complete viral DNA was mostly tagged after nuclear import, suggesting that the capsid remained intact as it entered the nucleus, and that uncoating took place thereafter. Moreover, uncoating began in the nucleus as early as eight hours after infection with HIV-1 (Figure 1).
These observations suggest little – if any – loss of the capsid protein prior to nuclear import. Consistent with this interpretation, high-resolution imaging techniques revealed intact capsid-like structures at sites close to ANCHOR-labeled viral DNA. Tomographic reconstructions of these structures provided a unique snapshot of the HIV-1 uncoating process, showing what appeared to be holes in capsid-like structures that did not contain viral DNA. This quite striking finding is consistent with a previous model of uncoating in which reverse transcription leads to the generation of mechanical forces that compromise the structural integrity of the capsid (Figure 1; Rankovic et al., 2017). In many ways, the capsid is like an egg from which the integration-competent viral DNA is hatched!
The work of Müller et al. fills in some of the gaps in our understanding of the early stages of HIV-1 replication. We now have a clearer picture of how and when the final integration-competent complex can be released from the capsid shell. An important next step will be to unravel the link between uncoating and integration.
In recent years, it has become clear that integration tends to take place at chromatin regions that are close to structures called nuclear speckles and away from the nuclear lamina (Figure 1; Bedwell and Engelman, 2021). It is possible, perhaps even likely, that uncoating also occurs at or near these same chromatin regions. Alternatively, a post-uncoating trafficking event might help guide the integration complex to these regions. A theory that can link reverse transcription, uncoating and integration will clarify the paths taken during HIV-1 infection which, in turn, could inform the development of new antiviral strategies.
References
-
Factors that mold the nuclear landscape of HIV-1 integrationNucleic Acids Research 49:621–635.https://doi.org/10.1093/nar/gkaa1207
-
Reverse transcription mechanically initiates HIV-1 capsid disassemblyJournal of Virology 91:e00289.https://doi.org/10.1128/JVI.00289-17
-
Capsid-dependent host factors in HIV-1 infectionTrends in Microbiology 25:741–755.https://doi.org/10.1016/j.tim.2017.04.004
Article and author information
Author details
Publication history
Copyright
© 2021, Bedwell and Engelman
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 851
- views
-
- 70
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Expansion microscopy (ExM) enables nanoscale imaging using a standard confocal microscope through the physical, isotropic expansion of fixed immunolabeled specimens. ExM is widely employed to image proteins, nucleic acids, and lipid membranes in single cells; however, current methods limit the number of samples that can be processed simultaneously. We developed High-throughput Expansion Microscopy (HiExM), a robust platform that enables expansion microscopy of cells cultured in a standard 96-well plate. Our method enables ~4.2 x expansion of cells within individual wells, across multiple wells, and between plates. We also demonstrate that HiExM can be combined with high-throughput confocal imaging platforms to greatly improve the ease and scalability of image acquisition. As an example, we analyzed the effects of doxorubicin, a known cardiotoxic agent, on human cardiomyocytes (CMs) as measured by the Hoechst signal across the nucleus. We show a dose-dependent effect on nuclear DNA that is not observed in unexpanded CMs, suggesting that HiExM improves the detection of cellular phenotypes in response to drug treatment. Our method broadens the application of ExM as a tool for scalable super-resolution imaging in biological research applications.
-
- Cell Biology
- Developmental Biology
Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.