Disease consequences of higher adiposity uncoupled from its adverse metabolic effects using Mendelian randomisation

  1. Susan Martin
  2. Jessica Tyrrell
  3. E Louise Thomas
  4. Matthew J Bown
  5. Andrew R Wood
  6. Robin N Beaumont
  7. Lam C Tsoi
  8. Philip E Stuart
  9. James T Elder
  10. Philip Law
  11. Richard Houlston
  12. Christopher Kabrhel
  13. Nikos Papadimitriou
  14. Marc J Gunter
  15. Caroline J Bull
  16. Joshua A Bell
  17. Emma E Vincent
  18. Naveed Sattar
  19. Malcolm G Dunlop
  20. Ian PM Tomlinson
  21. Sara Lindström
  22. INVENT consortium
  23. Jimmy D Bell
  24. Timothy M Frayling  Is a corresponding author
  25. Hanieh Yaghootkar  Is a corresponding author
  1. Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research, Innovation, Learning and Development building, Royal Devon & Exeter Hospital, United Kingdom
  2. Research Centre for Optimal Health, School of Life Sciences, University of Westminster, United Kingdom
  3. Department of Cardiovascular Sciences, University of Leicester, United Kingdom
  4. NIHR Leicester Biomedical Research Centre, United Kingdom
  5. Department of Dermatology, University of Michigan, United States
  6. Ann Arbor Veterans Affairs Hospital, United States
  7. The Institute of Cancer Research, United Kingdom
  8. Department of Emergency Medicine, Massachusetts General Hospital, United States
  9. Department of Emergency Medicine, Harvard Medical School, United States
  10. Nutrition and Metabolism Branch, International Agency for Research on Cancer, France
  11. MRC Integrative Epidemiology Unit at the University of Bristol, United Kingdom
  12. Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
  13. School of Cellular and Molecular Medicine, University of Bristol, United Kingdom
  14. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
  15. University of Edinburgh, United Kingdom
  16. Western General Hospital, United Kingdom
  17. Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, United Kingdom
  18. Department of Epidemiology, University of Washington, United States
  19. Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, United States
  20. Centre for Inflammation Research and Translational Medicine (CIRTM), Department of Life Sciences, Brunel University London, United Kingdom

Abstract

Background:

Some individuals living with obesity may be relatively metabolically healthy, whilst others suffer from multiple conditions that may be linked to adverse metabolic effects or other factors. The extent to which the adverse metabolic component of obesity contributes to disease compared to the non-metabolic components is often uncertain. We aimed to use Mendelian randomisation (MR) and specific genetic variants to separately test the causal roles of higher adiposity with and without its adverse metabolic effects on diseases.

Methods:

We selected 37 chronic diseases associated with obesity and genetic variants associated with different aspects of excess weight. These genetic variants included those associated with metabolically ‘favourable adiposity’ (FA) and ‘unfavourable adiposity’ (UFA) that are both associated with higher adiposity but with opposite effects on metabolic risk. We used these variants and two sample MR to test the effects on the chronic diseases.

Results:

MR identified two sets of diseases. First, 11 conditions where the metabolic effect of higher adiposity is the likely primary cause of the disease. Here, MR with the FA and UFA genetics showed opposing effects on risk of disease: coronary artery disease, peripheral artery disease, hypertension, stroke, type 2 diabetes, polycystic ovary syndrome, heart failure, atrial fibrillation, chronic kidney disease, renal cancer, and gout. Second, 9 conditions where the non-metabolic effects of excess weight (e.g. mechanical effect) are likely a cause. Here, MR with the FA genetics, despite leading to lower metabolic risk, and MR with the UFA genetics, both indicated higher disease risk: osteoarthritis, rheumatoid arthritis, osteoporosis, gastro-oesophageal reflux disease, gallstones, adult-onset asthma, psoriasis, deep vein thrombosis, and venous thromboembolism.

Conclusions:

Our results assist in understanding the consequences of higher adiposity uncoupled from its adverse metabolic effects, including the risks to individuals with high body mass index who may be relatively metabolically healthy.

Funding:

Diabetes UK, UK Medical Research Council, World Cancer Research Fund, National Cancer Institute.

Editor's evaluation

The authors have conducted a robust and very comprehensive study using Mendelian randomisation to disentangle metabolic and non-metabolic effects of overweight on a long list of disease outcomes. They have tested if effects of overweight work through either or both effects for a particular condition. This is an important topic and can help us better understand how overweight influences risk of several important outcomes.

https://doi.org/10.7554/eLife.72452.sa0

Introduction

Obesity is associated with a higher risk of many diseases, notably metabolic conditions such as type 2 diabetes, but many individuals are often relatively metabolically healthy compared to others of similar body mass index (BMI). Whilst these metabolically healthier individuals may be at lower risk of some obesity-related conditions, they may be at risk of conditions that are linked to other aspects of obesity, such as the load-bearing effects. The burden of obesity on individuals and health-care systems is very large, and in the absence of a widely applicable, sustainable treatment or effective public health measures, it is important to understand the disease consequences of obesity, and how they may be best alleviated, in more detail.

To better understand the disease consequences of obesity, many previous studies have used the approach of Mendelian randomisation (MR) (Smith and Ebrahim, 2004). These studies used common genetic variants robustly associated with BMI as proxies for obesity to assess the causal effects of higher BMI on many diseases. MR studies have provided strong evidence that higher BMI leads to osteoarthritis (Tachmazidou et al., 2019), colorectal cancer (Thrift et al., 2015; Suzuki et al., 2021; Bull et al., 2020), and psoriasis (Budu-Aggrey et al., 2019), as well as metabolic conditions such as type 2 diabetes, cardiovascular disease (Hägg et al., 2015), and heart failure (Cheng et al., 2019; Corbin et al., 2016; Fall et al., 2013). Other MR studies indicate that higher BMI may lead to lower risk of some diseases, including postmenopausal breast cancer (Guo et al., 2016) and Parkinson’s disease (Noyce et al., 2017).

Obesity is heterogeneous – for example, for a given BMI, people vary widely in their amount of fat versus fat free mass, predominantly muscle, and their distribution of fat, predominantly subcutaneous versus ectopic and upper versus lower body fat. Even when there is strong evidence of causality, obesity may lead to disease through a variety of mechanisms. Despite many MR studies testing the role of higher BMI in disease, few have attempted to separate and test the different mechanisms that could lead from obesity to disease. Some MR studies have investigated the effects of fat distribution using genetic variants associated with waist-hip ratio (WHR) adjusted for BMI and shown that adverse fat distribution (more upper body, less lower body) leads to higher risk of metabolic disease (Emdin et al., 2017), some cancers (Cornish et al., 2020), and gastro-oesophageal reflux disease (Green et al., 2020).

Previous studies have identified genetic variants associated with more specific measures of adiposity. For example, several studies have characterised variants associated with ‘favourable adiposity’ (FA) or reduced adipose storage capacity using a variety of approaches (Ji et al., 2019; Lotta et al., 2017; Kilpeläinen et al., 2011; Huang et al., 2021). We recently identified 36 FA alleles which are collectively associated with a favourable metabolic profile, higher subcutaneous fat but lower ectopic liver fat (Ji et al., 2019; Martin et al., 2021), resembling a polygenic phenotype opposite to lipodystrophy (Semple et al., 2011). We also identified 38 unfavourable adiposity (UFA) alleles which are associated with higher fat in subcutaneous and visceral adipose tissue, and higher ectopic liver and pancreatic fat (Ji et al., 2019; Martin et al., 2021), resembling monogenic obesity (Supplementary file 1a). We performed MR studies and showed that FA and UFA have opposite causal effects on six metabolic conditions (Martin et al., 2021). While both FA and UFA were associated with higher adiposity, FA was causally associated with lower risk of type 2 diabetes, heart disease, hypertension, stroke, polycystic ovary syndrome, and non-alcoholic fatty liver disease. In contrast, as expected, UFA was associated with higher risk of these conditions. These results confirmed the ability of the two sets of adiposity variants to partially separate out the metabolic from the non-metabolic effects of higher adiposity.

In this study, we aimed to investigate the effects of separate components to higher adiposity on risk of additional metabolic diseases and many non-metabolic diseases. We used genetic variants associated with BMI, body fat percentage, FA, and UFA to understand the components of higher adiposity that are the predominant causes of disease risk. Our findings may give guidance on some obesity-related risks which are not dependent on metabolic consequences, thereby guiding appropriate medical care.

Methods

Study design

An overview of our approach is shown in Figure 1. First, we identified diseases by performing a literature search of studies that had used MR to assess the consequences of BMI on outcome phenotypes. We used the search terms ‘BMI and Mendelian randomisation’ and ‘BMI and Mendelian randomization’. We identified 37 diseases associated with BMI and for which MR studies had previously been performed (Supplementary file 1b). We included all diseases regardless of the MR result in the published study. Second, we reperformed MR studies using BMI as an exposure. Third, for those diseases where MR indicated higher BMI was causal, we tested the effects of body fat percentage to confirm that the causal effect was due to fat mass rather than fat-free mass. Fourth, for diseases where MR suggested the BMI effect was due to excess adiposity, we used genetic variants more specific to the metabolic and non-metabolic components of higher adiposity to help understand the extent to which these factors influence disease.

Study design.

Data sources

We used three data sources for disease outcomes: (i) published genome-wide association studies (GWAS; Okada et al., 2014; Nikpay et al., 2015; Jones et al., 2017; Michailidou et al., 2017; Phelan et al., 2017; Scelo et al., 2017; Tsoi et al., 2017; Day et al., 2018; Mahajan et al., 2018; Malik et al., 2018; O’Mara et al., 2018; Roselli et al., 2018; Schumacher et al., 2018; Wray et al., 2018; An et al., 2019; Ferreira et al., 2019; Huyghe et al., 2019; Jansen et al., 2019; Kunkle et al., 2019; Law et al., 2019; Lindström et al., 2019; Morris et al., 2019; Nalls et al., 2019; Shah et al., 2019; Tachmazidou et al., 2019; Tin et al., 2019; Wuttke et al., 2019; Huyghe et al., 2021) and (ii) FinnGen (FinnGen, 2021) as our main results, and (iii) UK Biobank (RRID:SCR_012815; Collins, 2012) as additional validation. FinnGen is a cohort of 176,899 individuals with linked medical records. UK Biobank is a population cohort of >500,000 individuals aged 37–73 years recruited between 2006 and 2010 from across the UK. For the 37 identified diseases, 25 had summary GWAS data available from both a published GWAS consortium and FinnGen, and 12 diseases had GWAS summary data available in FinnGen only. In addition, data from 31 of the 37 diseases were available in the UK Biobank. No GWAS data were available for Barrett’s oesophagus, but we included gastro-oesophageal reflux. The characteristics of the studies and measures, disease outcomes, and the definition of cases and controls are described in Supplementary file 1ci–iii.

GWAS of UK Biobank participants

For the GWAS of 31 diseases available in UK Biobank, we used a linear mixed model implemented in BOLT-LMM to account for population structure and relatedness (Loh et al., 2015). We used age, sex, genotyping platform, study centre, and the first five principal components as covariates in the model.

Genetic variants

We used four sets of genetic variants as proxies of four exposures (Supplementary file 1d).

Body mass index

In the broadest category, we used a set of 73 variants independently associated with BMI at genome-wide significance (p<5 × 10–8). These variants were identified in the GIANT consortium of up to 339,224 individuals of European ancestry (Locke et al., 2015).

Body fat percentage

We used 696 variants from a GWAS in the UK Biobank (Martin et al., 2021). We used bio-impedance measures of body fat % taken by the Tanita BC-418MA body composition analyser in 442,278 individuals of European ancestry.

The BMI and body fat percentage variants were partially overlapping (n = 5 variants), but we used exposure-trait-specific weights for each variant.

FA variants

There are 36 FA variants (Martin et al., 2021). These variants were identified in two steps. First, they were associated (at p<5 × 10–8) with body fat percentage and a composite metabolic phenotype consisting of body fat percentage, HDL-cholesterol, triglycerides, SHBG, alanine transaminase, and aspartate transaminase. Second, in a k-means clustering approach (a hard clustering approach) (Martin et al., 2021), they formed a cluster of variants that were collectively associated with higher HDL-cholesterol, higher SHBG, and lower triglycerides and liver enzymes – resembling a phenotype opposite to lipodystrophy.

UFA variants

There are 38 UFA variants (Martin et al., 2021). These variants were identified in two steps. First, they were associated (at p<5 × 10–8) with body fat percentage and a composite metabolic phenotype as detailed above. Second, in a k-means clustering approach (Martin et al., 2021), they formed a cluster of variants that were collectively associated with lower HDL-cholesterol, lower SHBG, and higher triglycerides and liver enzymes - resembling monogenic obesity.

Mendelian randomisation

We investigated the causal associations between the four exposures (BMI, body fat percentage, FA, and UFA) and 37 disease outcomes by performing two-sample MR analysis (Pierce and Burgess, 2013). We used the inverse-variance weighted (IVW) approach as our main analysis, and MR-Egger and weighted median as sensitivity analyses in order to detect and partially account for unidentified pleiotropy of our genetic instruments. For BMI, we used effect size estimates from the GWAS of BMI (Locke et al., 2015), and for body fat percentage, FA, and UFA, we used effect size estimates from the GWAS of body fat percentage (442,278 European ancestry individuals from the UK Biobank study) (Ji et al., 2019).

To estimate the effects of variants on our disease outcomes, we used two main sources of data: FinnGen GWAS summary results and published GWAS of the same diseases (Supplementary file 1ci–ii). We performed MR within each data source and then meta-analysed the results across the two datasets using a random-effects model with the R package metafor (RRID:SCR_003450; Viechtbauer, 2010), where the data was available in both. For one published GWAS (the GECCO consortium), we only had information for FA and UFA variants. To provide further MR evidence, we used a third source of disease data – disease status in the UK Biobank (Supplementary file 1ciii). We ran the same models but did not meta-analyse with published GWAS and FinnGen because most of the body fat percentage, FA, and UFA variants were identified in the UK Biobank.

We obtained heterogeneity Q statistics for each IVW MR and MR-Egger, and I2 statistics for each MR-Egger analysis using the MendelianRandomization R package (Yavorska and Burgess, 2017). All statistical analyses were conducted using R software (R Development Core Team, 2020). Given the number of tests performed, we used a Benjamini–Hochberg false discovery rate (FDR) procedure and an FDR of 0.1 to define meaningful results for each of the four exposures (Benjamini and Hochberg, 1995).

Results

We identified 37 diseases as associated with obesity and for which MR studies had previously been performed. Of these 37, 5 metabolic conditions were part of our previous study that validated the use of FA and UFA genetic variants as a way of partially separating the metabolic from non-metabolic components of higher adiposity (Martin et al., 2021). Once we had tested BMI and body fat percentage, we further characterised the likely causal component of higher adiposity using FA and UFA variants as follows (Figure 1, step 5): (i) diseases with evidence that the metabolic effect of higher adiposity is causal. Here, MR using the UFA genetic variants indicated that higher adiposity with its adverse metabolic consequences was causal to disease, whilst MR using the FA genetic variants indicated that higher adiposity with favourable metabolic effects was protective (at FDR 0.1). (ii) Diseases with evidence that there is a non-metabolic causal effect (e.g. mechanical effect, psychological/adverse social effect). Here, MR using the FA genetic variants indicated that higher adiposity without its adverse metabolic consequences was likely contributing to the disease, as well as the MR using the UFA genetic variants. (iii) Diseases with evidence that there is a combination of causal effects but with a predominantly metabolic component. Here, MR using the UFA genetic variants indicated that higher adiposity with its adverse metabolic consequences was causal to disease, and MR using the FA genetic variants was directionally consistent with higher adiposity with favourable metabolic effects being protective but FDR > 0.1. (iv) Diseases with evidence that there is a combination of causal effects but with a predominantly non-metabolic component. Here, MR using the UFA genetic variants indicated that higher adiposity without its adverse metabolic consequences was likely contributing to the disease, and MR of the FA genetic variants was directionally consistent with this but FDR > 0.1.

We grouped these disease outcomes into seven major categories – cardiovascular and metabolic conditions, musculoskeletal, gastrointestinal, nervous, integumentary and respiratory systems, and cancer. MR analysis of five conditions (coronary artery disease, hypertension, stroke, type 2 diabetes, and polycystic ovary syndrome) was part of our previous study (Martin et al., 2021). We focused on the MR of body fat percentage if a causal effect of BMI was indicated, and the MR of FA and UFA if a causal effect of BMI and body fat percentage was indicated, but have presented all results in Supplementary file 1e for completeness. Where random-effects meta-analyses were performed, the heterogeneity statistics are given in Supplementary file 1f.

(i) Diseases with evidence that the metabolic effect of higher adiposity is causal

When comparing the MR analyses for FA and UFA, our results provided evidence that the metabolic effect of higher adiposity is contributing causally to coronary artery disease, peripheral artery disease, hypertension, stroke, type 2 diabetes, and gout (Figures 212, Supplementary file 1e). For stroke, our results were consistent when using sub-types of the condition (Figure 3—figure supplement 1, Supplementary file 1g). Our results also indicated that the metabolic effect of higher adiposity is causal to chronic kidney disease, although the results from BMI and body fat percentage were less conclusive (Figure 3).

The inverse-variance weighted (IVW) two-sample MR analysis/meta-analysis of the effects of body mass index (BMI), body fat percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on type 2 diabetes, hypertension, polycystic ovary syndrome and coronary artery disease.

The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

Figure 3 with 1 supplement see all
The inverse-variance weighted (IVW) two-sample MR analysis/meta-analysis of the effects of body mass index (BMI), body fat percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on stroke, peripheral artery disease, heart failure, atrial fibrillation and chronic kidney disease.

The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

The inverse-variance weighted (IVW) two-sample MR analysis/meta-analysis of the effects of body mass index (BMI), body fat percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on venous thromboembolism, deep vein thrombosis, pulmonary embolism and abdominal aneurysm.

The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

Figure 5 with 1 supplement see all
The inverse-variance weighted (IVW) two-sample MR analysis/meta-analysis of the effects of body mass index (BMI), body fat percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on gout, osteoarthritis, osteoporosis and rheumatoid arthritis.

The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

The inverse-variance weighted (IVW) two-sample MR analysis/meta-analysis of the effects of body mass index (BMI), body fat percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on gallstones and gastro-oesophageal reflux disease.

The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

The inverse-variance weighted (IVW) two-sample MR analysis/meta-analysis of the effects of body mass index (BMI), body fat percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on Alzheimer’s disease, depression, multiple sclerosis and Parkinson’s disease.

The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

The inverse-variance weighted (IVW) two-sample MR analysis/meta-analysis of the effects of body mass index (BMI), body fat percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on psoriasis.

The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

Figure 9 with 1 supplement see all
The inverse-variance weighted (IVW) two-sample MR analysis/meta-analysis of the effects of body mass index (BMI), body fat percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on adult-onset asthma.

The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

Figure 10 with 1 supplement see all
The inverse-variance weighted (IVW) two-sample MR analysis/meta-analysis of the effects of body mass index (BMI), body fat percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on Barrett’s oesophagus, breast cancer, cancer myeloma and colorectal cancer.

The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

Figure 11 with 2 supplements see all
The inverse-variance weighted (IVW) two-sample MR analysis/meta-analysis of the effects of body mass index (BMI), body fat percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on endometrial and lung cancer, meningioma and ovarian cancer.

The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

The inverse-variance weighted (IVW) two-sample MR analysis/meta-analysis of the effects of body mass index (BMI), body fat percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on pancreatic, prostate, renal and thyroid cancer.

The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

(ii) Diseases with evidence that there is a non-metabolic causal effect

When comparing the MR analyses for FA and UFA, our results provided evidence that some non-metabolic effect of higher adiposity is contributing causally to venous thromboembolism, deep vein thrombosis, osteoarthritis, and rheumatoid arthritis (Figures 212, Supplementary file 1e). For osteoarthritis, our results were consistent when using sub-types of the condition (Figure 5—figure supplement 1, Supplementary file 1g).

(iii) Diseases with evidence that there is a combination of causal effects but with a predominantly metabolic component

When comparing the MR analyses for FA and UFA, our results provided evidence that the metabolic effect of higher adiposity is the predominate cause of the link between higher BMI and polycystic ovary syndrome, heart failure, and atrial fibrillation. Our results also provided evidence that the metabolic effect of higher adiposity is the predominate cause of the link between higher BMI and a reduced risk of breast cancer and higher risk of renal cancer, although the results from body fat percentage were less conclusive (Figures 212, Supplementary file 1e).

(iv) Diseases with evidence that there is a combination of causal effects but with a predominantly non-metabolic component

When comparing the MR analyses for FA and UFA, our results suggested that some non-metabolic effect of higher adiposity is the predominant cause of the link between higher BMI and gallstones, gastro-oesophageal reflux disease, adult-onset asthma, and psoriasis (Figures 212, Supplementary file 1e). Our results also indicated that some non-metabolic effect of higher adiposity is causal to osteoporosis, although the results from BMI were less conclusive (Figure 5). Our results found no evidence (at p<0.05) of an effect of BMI or adiposity on child-onset asthma (Figure 9—figure supplement 1, Supplementary file 1g).

All other disease outcomes

Fifteen disease outcomes did not fit the criteria for definitions i–iv. For five of these conditions, our MR results indicated a causal effect of higher BMI or adiposity, but results from FA and UFA were inconclusive: pulmonary embolism, depression, endometrial cancer, lung cancer, and prostate cancer (Figures 212, Supplementary file 1e). Additionally, we identified some evidence of a metabolic effect of higher adiposity with colorectal and ovarian cancer, with the MR of FA indicating lower odds of colorectal (0.67 [0.52, 0.85]) and ovarian (0.35 [0.18, 0.70]) cancers, but MR of UFA was consistent with the null (p>0.05). For colorectal and ovarian cancer, our results were consistent when using sub-types of the conditions (Figure 10—figure supplement 1, Figure 11—figure supplements 1 and 2, Supplementary file 1g).

Sensitivity analyses

Out of 82 disease outcomes (including subtypes), weighted median MR results were directionally consistent with IVW analysis for 75 diseases for BMI and 73 for body fat percentage, with 33 and 47 of these having p<0.05, respectively. For FA and UFA, where sub-type colorectal cancer data was available, the total number of diseases was 87, and 76 were directionally consistent for both exposures, with 22 and 39 having p<0.05, respectively.

MR-Egger results were broadly consistent with the primary IVW MR results, indicating that pleiotropy (variants acting on the outcomes through more than one mechanism) appears to have had limited effect on our results. MR-Egger results were directionally consistent with IVW for 71 diseases for BMI and 70 for body fat percentage, with 25 and 38 of these having p<0.05, respectively. For FA and UFA, MR-Egger was directionally consistent for 60 and 67 diseases, with 6 and 15 having p<0.05, respectively (Supplementary file 1g). Of the 31 diseases available in the UK Biobank, the IVW analysis of these was directionally consistent with the FinnGen and/or published GWAS analysis for 28, 27, 24, and 27 traits for BMI, body fat percentage, FA, and UFA, respectively (Supplementary file 1h). Of these, 18, 21, 9, and 16 had p<0.05, respectively.

Discussion

We used a genetic approach to understand the role of higher adiposity uncoupled from its adverse metabolic effects in mechanisms linking obesity to higher risk of disease. We first used MR to provide evidence that higher BMI was causally associated with 21 diseases, broadly consistent with those from previous studies. For the majority (17) of these diseases, our results indicated that the BMI effect was predominantly due to excess adiposity rather than a non-fat mass component to BMI. We then used a more specific approach to test the separate roles of higher adiposity with and without its adverse metabolic effects. We provided genetic evidence that the adverse metabolic consequences of higher BMI lead to coronary artery disease, peripheral artery disease, hypertension, stroke, type 2 diabetes, polycystic ovary syndrome, heart failure, atrial fibrillation, chronic kidney disease, renal cancer, and gout, and the adverse non-metabolic consequences of higher BMI likely contribute to osteoarthritis, rheumatoid arthritis, osteoporosis, gastro-oesophageal reflux disease, gallstones, adult-onset asthma, psoriasis, deep vein thrombosis, and venous thromboembolism.

Understanding the reasons why obesity leads to disease is important in order to better advise health professionals and patients of health risks linked to obesity, whether or not they show metabolic derangements. Many previous studies have used an MR approach to support a causal role of higher BMI in disease, but here we attempted to systematically test many conditions and the role of separate components of higher BMI. We discuss some of the more notable, and potentially clinically important, results below.

Cardiometabolic diseases

Previous studies, including those using MR, have shown that higher BMI leads to many cardiometabolic diseases (Larsson et al., 2020; Riaz et al., 2018; Xu et al., 2020), but our results provide additional insight into the likely mechanisms. In addition to the previously established opposing effects of metabolically FA and UFA for coronary artery disease, stroke, hypertension, and type 2 diabetes (Martin et al., 2021), our results confirmed similarly strong metabolic components to peripheral artery disease and chronic kidney disease. These results are consistent with the well-established adverse metabolic effects of higher BMI on these diseases (contributing to atherosclerotic effects or linked to specific haemodynamic impacts) (Sattar and McGuire, 2018). For two further cardiovascular conditions, heart failure and atrial fibrillation, the results were less certain. For these two conditions, the evidence of a predominantly metabolic effect of higher BMI was very clear – with the MR of UFA consistent with effects at least as strong as those for coronary artery disease. However, in contrast to the results for coronary artery disease, the MR of FA was consistent with no effect. This comparison between the effects of FA and UFA may indicate that there is a partial mechanical, or other non-metabolic component, as well as metabolic effect, perhaps mediated by excess weight of any type placing extra strain on the heart.

In contrast to the results for most of the cardiometabolic diseases, our MR analyses provided evidence for a likely non-metabolic component mediating the effect of higher BMI on venous thromboembolism and deep vein thrombosis (two closely related conditions). This finding is clinically important as it suggests that treating metabolic risk factors associated with obesity without changing weight may not reduce the risk of deep vein thrombosis in individuals with obesity. Possible mechanisms could include higher intra‐abdominal pressure (due to excess fat) and slower blood circulation in the lower limbs (due to a more sedentary lifestyle secondary to obesity, or mechanical occlusion of veins) promoting clot initiation and formation (Lorenzet et al., 2012).

Musculoskeletal diseases

We observed clear differences for the role of higher BMI in different musculoskeletal diseases. For gout, opposing effects of FA and UFA clearly indicated a metabolic effect. Gout is a form of inflammatory arthritis caused by the deposition of urate crystals within the joints (Dalbeth et al., 2016). Weight loss from bariatric surgery is associated with lower serum uric acid and lower risk of gout (Maglio et al., 2017). A previous MR study showed that overall obesity, but not the central location of fat, increased the risk of gout (Larsson et al., 2018). The protective effect of FA could be due to improved insulin sensitivity leading to less insulin-enhanced reabsorption of organic anions such as urate (Choi et al., 2005). In contrast to gout, our MR analysis provided evidence that a non-metabolic effect of higher adiposity is a likely cause of osteoarthritis and rheumatoid arthritis – with both FA and UFA leading to disease. For osteoarthritis, the effect of UFA was stronger than that of FA, indicating both a metabolic and non-metabolic component. This is consistent with a causal association between higher adiposity and higher risk of osteoarthritis in non-weight-bearing joints including hands (Reyes et al., 2016). For rheumatoid arthritis, the effects of FA and UFA were similar, suggesting the non-metabolic effect accentuating, or more readily unmasking, the autoimmune background risk, as the key BMI-related factor, although the confidence intervals were wider than those for osteoarthritis. The UFA variants may potentially influence these conditions by load-bearing mechanisms, and tissue enrichment analysis for the FA and UFA variants previously found that FA and UFA loci are enriched for genes expressed in adipocytes and adipose tissue, and mesenchymal stem cells, respectively (Martin et al., 2021). For osteoporosis, we did not replicate the previous finding of a causal association between higher BMI and risk of osteoporosis (estimated by bone mineral density; Song et al., 2020); however, we observed a causal association between higher body fat percentage and a higher risk of osteoporosis with consistent risk increasing effects of both FA and UFA. This finding adds to the complex relationship between higher BMI and osteoporosis, where higher BMI at earlier ages may increase bone accrual, but in later years results in adverse effects.

Gastrointestinal diseases

We observed differences in the effects of BMI when comparing the two gastrointestinal diseases, although the results are less conclusive than those for the musculoskeletal conditions. Here, our results were consistent with a predominantly non-metabolic effect contributing to the association between higher BMI and higher risk of gallstones. Higher BMI has been shown to be causally associated with higher risk of gallstones (Yuan et al., 2021). There are several possible mechanisms that could explain how higher BMI without its adverse metabolic effects could increase the risk of gallstones. These could include a sedentary lifestyle and gallbladder hypomotility secondary to increased abdominal fat mass (Mathus-Vliegen et al., 2004). Metabolic mechanisms could include hepatic de novo cholesterol synthesis (Ståhlberg et al., 1997; Cruz-Monserrate et al., 2016). For gastro-oesophageal reflux, the consistent direction and effect sizes of higher FA and UFA indicate a non-metabolic component, an effect that may be mechanical and better explained by higher central adiposity rather than overall BMI (Green et al., 2020).

Other diseases

For most of the other diseases tested, it was difficult to draw firm conclusions about the role of metabolically FA and UFA. For some diseases, this was in part due to the lack of MR evidence for a role of any form of higher BMI. For example, our MR analyses provided no evidence for the role of higher BMI in the neurodegenerative diseases Alzheimer’s disease, multiple sclerosis, and Parkinson’s. These results are consistent with some but not all previous studies. For example, higher BMI is listed as a key risk factor for Alzheimer’s disease (Livingston et al., 2020), although with little evidence of causality, including MR studies that failed to show an effect (Larsson et al., 2017; Nordestgaard et al., 2017). In contrast to our results, recent MR studies have indicated that higher BMI is protective of Parkinson’s disease (Noyce et al., 2017) and causally associated with higher risk of multiple sclerosis (Mokry et al., 2016). For the inflammatory skin disorder psoriasis, our results indicated that both higher BMI and higher body fat percentage are causally associated with higher risk, but determining the underlying mechanism from the MR of FA and UFA was difficult. Higher BMI is a known cause of psoriasis (Budu-Aggrey et al., 2019; Iskandar et al., 2015) and weight loss is a recommended treatment (Iskandar et al., 2015). It is possible that both metabolic and non-metabolic pathways are driving the risk. The non-metabolic pathways could include inflammation which is one of the possible causal mechanisms (Sbidian et al., 2017; Dowlatshahi et al., 2013). Further work is required to understand if psoriasis could be effectively treated by targeting the metabolic factors alone, or whether only weight loss will benefit such patients. For cancers, our results do not provide any clear additional insight into the likely mechanisms, with potentially stronger effects for BMI and UFA compared to body fat percentage in some analyses hard to explain biologically. The reasons why higher BMI is associated with cancers is uncertain, although several MR studies indicate that the association with many is causal (Mariosa et al., 2019; Vincent and Yaghootkar, 2020), and that central adiposity may play a role (Jarvis et al., 2016). Exposure to higher insulin levels is a plausible mechanism, and some studies have used MR to test insulin directly (Nead et al., 2015; Shu et al., 2019; Carreras-Torres et al., 2017b; Carreras-Torres et al., 2017a; Johansson et al., 2019). Our MR analysis reproduced the previous finding between higher adiposity and higher risk of endometrial cancer (Painter et al., 2016) and renal cell carcinoma (Johansson et al., 2019), and lower risk of breast cancer (Guo et al., 2016; Shu et al., 2019). In contrast to previous MR studies showing a causal link between higher BMI and higher risk of prostate cancer (Kazmi et al., 2020; Davies et al., 2015), we identified a causal association between higher body fat percentage but lower risk of prostate cancer. The relationship between higher BMI and risk of breast cancer is complicated, with MR studies indicating that higher BMI is protective of postmenopausal breast cancer (Gao et al., 2016). This contrasts with the epidemiological associations but could be explained by effects of childhood BMI (Richardson et al., 2020).

Strengths and limitations

Our study had a number of limitations. First, we do not know all of the potential effects of the FA and UFA genetic variants on intermediary mechanisms. For example, the inflammatory profile of the FA variants needs further characterisation. However, the consistent association of the FA genetic variants with lower risk of a wide range of metabolic conditions – from type 2 diabetes where insulin resistance predominates, to stroke where atherosclerotic and blood pressure mechanisms predominate – indicates that these variants collectively represent a profile of higher adiposity and favourable metabolic factors. Second, for some diseases, we may have not had sufficient power to detect an effect of BMI or to separate the effects, and this could explain some of the null findings, especially for conditions where we might have expected an effect, such as pulmonary embolism and aortic aneurysm, but there were smaller numbers of cases available. Third, in some situations it was harder to interpret the results from the MR FA and UFA analyses, especially when one appeared to show an effect and the other did not. One possibility is that some diseases are a combination of both non-metabolic and metabolic effects. Osteoarthritis was the best example of this potential scenario because both FA and UFA increased the risk of disease, but UFA to a greater extent. However, for other diseases, it could be hard to detect a combined effect because the MR with FA could be protective (if metabolic effects predominate), increase risk (if non-metabolic effects predominate), or null (if the two have similar effects). Finally, we used an FDR of 0.1 as a guide to discussing meaningful results. We observed 21 out of the 37 outcome diseases reaching an FDR of 0.1 (based on the Benjamini–Hochberg procedure) for BMI, and 19, 11, and 20 out of the 21 diseases causally associated with BMI reaching this FDR for body fat percentage, FA, and UFA, respectively. Equivalent numbers for an FDR of 0.05 were 21, 17, 11, and 17. Excluding the five metabolic conditions used in our previous study (which were all causally associated with BMI), these results are 16, 14, 7, and 15 for an FDR of 0.1, and 16, 12, 7, and 12 for an FDR of 0.05. In addition to correcting for multiple tests, we noted that 74 of the 37 × 4 MR tests reached a p-value of <0.05 when we would only expect 7 by chance, suggesting many of the tests that did not reach a strict Bonferroni p<0.05 were meaningful.

In summary, we have used a genetic approach to test the separate roles of higher adiposity with and without its adverse metabolic effects. These results emphasize that many people in the community who are of higher BMI are at risk of multiple chronic conditions that can severely impair their quality of life or cause morbidity or mortality, even if their metabolic parameters appear relatively normal.

Data availability

GWAS data from the outcome diseases studied is available from links published in the original studies (Supplementary File 1ci). FinnGen data is available at: https://finngen.gitbook.io/documentation/, and the list of disease outcomes used is in Supplementary File 1cii. Individual-level UK Biobank data cannot be provided, but it is available by application to the UK Biobank: https://www.ukbiobank.ac.uk, and a list of the traits used is in Supplementary File 1ciii. Code used to conduct this analysis will be made available on GitHub after removing any sensitive information (https://github.com/susiemartin/uncoupling-bmi, copy archived at swh:1:rev:f3472762ad6cb7f313656f684e07c14b8735efe5).

References

    1. Fall T
    2. Hägg S
    3. Mägi R
    4. Ploner A
    5. Fischer K
    6. Horikoshi M
    7. Sarin A-P
    8. Thorleifsson G
    9. Ladenvall C
    10. Kals M
    11. Kuningas M
    12. Draisma HHM
    13. Ried JS
    14. van Zuydam NR
    15. Huikari V
    16. Mangino M
    17. Sonestedt E
    18. Benyamin B
    19. Nelson CP
    20. Rivera NV
    21. Kristiansson K
    22. Shen H-Y
    23. Havulinna AS
    24. Dehghan A
    25. Donnelly LA
    26. Kaakinen M
    27. Nuotio M-L
    28. Robertson N
    29. de Bruijn RFAG
    30. Ikram MA
    31. Amin N
    32. Balmforth AJ
    33. Braund PS
    34. Doney ASF
    35. Döring A
    36. Elliott P
    37. Esko T
    38. Franco OH
    39. Gretarsdottir S
    40. Hartikainen A-L
    41. Heikkilä K
    42. Herzig K-H
    43. Holm H
    44. Hottenga JJ
    45. Hyppönen E
    46. Illig T
    47. Isaacs A
    48. Isomaa B
    49. Karssen LC
    50. Kettunen J
    51. Koenig W
    52. Kuulasmaa K
    53. Laatikainen T
    54. Laitinen J
    55. Lindgren C
    56. Lyssenko V
    57. Läärä E
    58. Rayner NW
    59. Männistö S
    60. Pouta A
    61. Rathmann W
    62. Rivadeneira F
    63. Ruokonen A
    64. Savolainen MJ
    65. Sijbrands EJG
    66. Small KS
    67. Smit JH
    68. Steinthorsdottir V
    69. Syvänen A-C
    70. Taanila A
    71. Tobin MD
    72. Uitterlinden AG
    73. Willems SM
    74. Willemsen G
    75. Witteman J
    76. Perola M
    77. Evans A
    78. Ferrières J
    79. Virtamo J
    80. Kee F
    81. Tregouet D-A
    82. Arveiler D
    83. Amouyel P
    84. Ferrario MM
    85. Brambilla P
    86. Hall AS
    87. Heath AC
    88. Madden PAF
    89. Martin NG
    90. Montgomery GW
    91. Whitfield JB
    92. Jula A
    93. Knekt P
    94. Oostra B
    95. van Duijn CM
    96. Penninx BWJH
    97. Smith GD
    98. Kaprio J
    99. Samani NJ
    100. Gieger C
    101. Peters A
    102. Wichmann HE
    103. Boomsma DI
    104. de Geus EJC
    105. Tuomi T
    106. Power C
    107. Hammond CJ
    108. Spector TD
    109. Lind L
    110. Orho-Melander M
    111. Palmer CNA
    112. Morris AD
    113. Groop L
    114. Järvelin M-R
    115. Salomaa V
    116. Vartiainen E
    117. Hofman A
    118. Ripatti S
    119. Metspalu A
    120. Thorsteinsdottir U
    121. Stefansson K
    122. Pedersen NL
    123. McCarthy MI
    124. Ingelsson E
    125. Prokopenko I
    126. European Network for Genetic and Genomic Epidemiology (ENGAGE) consortium
    (2013) The role of adiposity in cardiometabolic traits: a Mendelian randomization analysis
    PLOS Medicine 10:e1001474.
    https://doi.org/10.1371/journal.pmed.1001474
    1. Huyghe JR
    2. Bien SA
    3. Harrison TA
    4. Kang HM
    5. Chen S
    6. Schmit SL
    7. Conti DV
    8. Qu C
    9. Jeon J
    10. Edlund CK
    11. Greenside P
    12. Wainberg M
    13. Schumacher FR
    14. Smith JD
    15. Levine DM
    16. Nelson SC
    17. Sinnott-Armstrong NA
    18. Albanes D
    19. Alonso MH
    20. Anderson K
    21. Arnau-Collell C
    22. Arndt V
    23. Bamia C
    24. Banbury BL
    25. Baron JA
    26. Berndt SI
    27. Bézieau S
    28. Bishop DT
    29. Boehm J
    30. Boeing H
    31. Brenner H
    32. Brezina S
    33. Buch S
    34. Buchanan DD
    35. Burnett-Hartman A
    36. Butterbach K
    37. Caan BJ
    38. Campbell PT
    39. Carlson CS
    40. Castellví-Bel S
    41. Chan AT
    42. Chang-Claude J
    43. Chanock SJ
    44. Chirlaque M-D
    45. Cho SH
    46. Connolly CM
    47. Cross AJ
    48. Cuk K
    49. Curtis KR
    50. de la Chapelle A
    51. Doheny KF
    52. Duggan D
    53. Easton DF
    54. Elias SG
    55. Elliott F
    56. English DR
    57. Feskens EJM
    58. Figueiredo JC
    59. Fischer R
    60. FitzGerald LM
    61. Forman D
    62. Gala M
    63. Gallinger S
    64. Gauderman WJ
    65. Giles GG
    66. Gillanders E
    67. Gong J
    68. Goodman PJ
    69. Grady WM
    70. Grove JS
    71. Gsur A
    72. Gunter MJ
    73. Haile RW
    74. Hampe J
    75. Hampel H
    76. Harlid S
    77. Hayes RB
    78. Hofer P
    79. Hoffmeister M
    80. Hopper JL
    81. Hsu W-L
    82. Huang W-Y
    83. Hudson TJ
    84. Hunter DJ
    85. Ibañez-Sanz G
    86. Idos GE
    87. Ingersoll R
    88. Jackson RD
    89. Jacobs EJ
    90. Jenkins MA
    91. Joshi AD
    92. Joshu CE
    93. Keku TO
    94. Key TJ
    95. Kim HR
    96. Kobayashi E
    97. Kolonel LN
    98. Kooperberg C
    99. Kühn T
    100. Küry S
    101. Kweon S-S
    102. Larsson SC
    103. Laurie CA
    104. Le Marchand L
    105. Leal SM
    106. Lee SC
    107. Lejbkowicz F
    108. Lemire M
    109. Li CI
    110. Li L
    111. Lieb W
    112. Lin Y
    113. Lindblom A
    114. Lindor NM
    115. Ling H
    116. Louie TL
    117. Männistö S
    118. Markowitz SD
    119. Martín V
    120. Masala G
    121. McNeil CE
    122. Melas M
    123. Milne RL
    124. Moreno L
    125. Murphy N
    126. Myte R
    127. Naccarati A
    128. Newcomb PA
    129. Offit K
    130. Ogino S
    131. Onland-Moret NC
    132. Pardini B
    133. Parfrey PS
    134. Pearlman R
    135. Perduca V
    136. Pharoah PDP
    137. Pinchev M
    138. Platz EA
    139. Prentice RL
    140. Pugh E
    141. Raskin L
    142. Rennert G
    143. Rennert HS
    144. Riboli E
    145. Rodríguez-Barranco M
    146. Romm J
    147. Sakoda LC
    148. Schafmayer C
    149. Schoen RE
    150. Seminara D
    151. Shah M
    152. Shelford T
    153. Shin M-H
    154. Shulman K
    155. Sieri S
    156. Slattery ML
    157. Southey MC
    158. Stadler ZK
    159. Stegmaier C
    160. Su Y-R
    161. Tangen CM
    162. Thibodeau SN
    163. Thomas DC
    164. Thomas SS
    165. Toland AE
    166. Trichopoulou A
    167. Ulrich CM
    168. Van Den Berg DJ
    169. van Duijnhoven FJB
    170. Van Guelpen B
    171. van Kranen H
    172. Vijai J
    173. Visvanathan K
    174. Vodicka P
    175. Vodickova L
    176. Vymetalkova V
    177. Weigl K
    178. Weinstein SJ
    179. White E
    180. Win AK
    181. Wolf CR
    182. Wolk A
    183. Woods MO
    184. Wu AH
    185. Zaidi SH
    186. Zanke BW
    187. Zhang Q
    188. Zheng W
    189. Scacheri PC
    190. Potter JD
    191. Bassik MC
    192. Kundaje A
    193. Casey G
    194. Moreno V
    195. Abecasis GR
    196. Nickerson DA
    197. Gruber SB
    198. Hsu L
    199. Peters U
    (2019) Discovery of common and rare genetic risk variants for colorectal cancer
    Nature Genetics 51:76–87.
    https://doi.org/10.1038/s41588-018-0286-6
    1. Huyghe JR
    2. Harrison TA
    3. Bien SA
    4. Hampel H
    5. Figueiredo JC
    6. Schmit SL
    7. Conti DV
    8. Chen S
    9. Qu C
    10. Lin Y
    11. Barfield R
    12. Baron JA
    13. Cross AJ
    14. Diergaarde B
    15. Duggan D
    16. Harlid S
    17. Imaz L
    18. Kang HM
    19. Levine DM
    20. Perduca V
    21. Perez-Cornago A
    22. Sakoda LC
    23. Schumacher FR
    24. Slattery ML
    25. Toland AE
    26. van Duijnhoven FJB
    27. Van Guelpen B
    28. Agudo A
    29. Albanes D
    30. Alonso MH
    31. Anderson K
    32. Arnau-Collell C
    33. Arndt V
    34. Banbury BL
    35. Bassik MC
    36. Berndt SI
    37. Bézieau S
    38. Bishop DT
    39. Boehm J
    40. Boeing H
    41. Boutron-Ruault M-C
    42. Brenner H
    43. Brezina S
    44. Buch S
    45. Buchanan DD
    46. Burnett-Hartman A
    47. Caan BJ
    48. Campbell PT
    49. Carr PR
    50. Castells A
    51. Castellví-Bel S
    52. Chan AT
    53. Chang-Claude J
    54. Chanock SJ
    55. Curtis KR
    56. de la Chapelle A
    57. Easton DF
    58. English DR
    59. Feskens EJM
    60. Gala M
    61. Gallinger SJ
    62. Gauderman WJ
    63. Giles GG
    64. Goodman PJ
    65. Grady WM
    66. Grove JS
    67. Gsur A
    68. Gunter MJ
    69. Haile RW
    70. Hampe J
    71. Hoffmeister M
    72. Hopper JL
    73. Hsu W-L
    74. Huang W-Y
    75. Hudson TJ
    76. Jenab M
    77. Jenkins MA
    78. Joshi AD
    79. Keku TO
    80. Kooperberg C
    81. Kühn T
    82. Küry S
    83. Le Marchand L
    84. Lejbkowicz F
    85. Li CI
    86. Li L
    87. Lieb W
    88. Lindblom A
    89. Lindor NM
    90. Männistö S
    91. Markowitz SD
    92. Milne RL
    93. Moreno L
    94. Murphy N
    95. Nassir R
    96. Offit K
    97. Ogino S
    98. Panico S
    99. Parfrey PS
    100. Pearlman R
    101. Pharoah PDP
    102. Phipps AI
    103. Platz EA
    104. Potter JD
    105. Prentice RL
    106. Qi L
    107. Raskin L
    108. Rennert G
    109. Rennert HS
    110. Riboli E
    111. Schafmayer C
    112. Schoen RE
    113. Seminara D
    114. Song M
    115. Su Y-R
    116. Tangen CM
    117. Thibodeau SN
    118. Thomas DC
    119. Trichopoulou A
    120. Ulrich CM
    121. Visvanathan K
    122. Vodicka P
    123. Vodickova L
    124. Vymetalkova V
    125. Weigl K
    126. Weinstein SJ
    127. White E
    128. Wolk A
    129. Woods MO
    130. Wu AH
    131. Abecasis GR
    132. Nickerson DA
    133. Scacheri PC
    134. Kundaje A
    135. Casey G
    136. Gruber SB
    137. Hsu L
    138. Moreno V
    139. Hayes RB
    140. Newcomb PA
    141. Peters U
    (2021) Genetic architectures of proximal and distal colorectal cancer are partly distinct
    Gut 70:1325–1334.
    https://doi.org/10.1136/gutjnl-2020-321534
    1. Jones GT
    2. Tromp G
    3. Kuivaniemi H
    4. Gretarsdottir S
    5. Baas AF
    6. Giusti B
    7. Strauss E
    8. Van’t Hof FNG
    9. Webb TR
    10. Erdman R
    11. Ritchie MD
    12. Elmore JR
    13. Verma A
    14. Pendergrass S
    15. Kullo IJ
    16. Ye Z
    17. Peissig PL
    18. Gottesman O
    19. Verma SS
    20. Malinowski J
    21. Rasmussen-Torvik LJ
    22. Borthwick KM
    23. Smelser DT
    24. Crosslin DR
    25. de Andrade M
    26. Ryer EJ
    27. McCarty CA
    28. Böttinger EP
    29. Pacheco JA
    30. Crawford DC
    31. Carrell DS
    32. Gerhard GS
    33. Franklin DP
    34. Carey DJ
    35. Phillips VL
    36. Williams MJA
    37. Wei W
    38. Blair R
    39. Hill AA
    40. Vasudevan TM
    41. Lewis DR
    42. Thomson IA
    43. Krysa J
    44. Hill GB
    45. Roake J
    46. Merriman TR
    47. Oszkinis G
    48. Galora S
    49. Saracini C
    50. Abbate R
    51. Pulli R
    52. Pratesi C
    53. Saratzis A
    54. Verissimo AR
    55. Bumpstead S
    56. Badger SA
    57. Clough RE
    58. Cockerill G
    59. Hafez H
    60. Scott DJA
    61. Futers TS
    62. Romaine SPR
    63. Bridge K
    64. Griffin KJ
    65. Bailey MA
    66. Smith A
    67. Thompson MM
    68. van Bockxmeer FM
    69. Matthiasson SE
    70. Thorleifsson G
    71. Thorsteinsdottir U
    72. Blankensteijn JD
    73. Teijink JAW
    74. Wijmenga C
    75. de Graaf J
    76. Kiemeney LA
    77. Lindholt JS
    78. Hughes A
    79. Bradley DT
    80. Stirrups K
    81. Golledge J
    82. Norman PE
    83. Powell JT
    84. Humphries SE
    85. Hamby SE
    86. Goodall AH
    87. Nelson CP
    88. Sakalihasan N
    89. Courtois A
    90. Ferrell RE
    91. Eriksson P
    92. Folkersen L
    93. Franco-Cereceda A
    94. Eicher JD
    95. Johnson AD
    96. Betsholtz C
    97. Ruusalepp A
    98. Franzén O
    99. Schadt EE
    100. Björkegren JLM
    101. Lipovich L
    102. Drolet AM
    103. Verhoeven EL
    104. Zeebregts CJ
    105. Geelkerken RH
    106. van Sambeek MR
    107. van Sterkenburg SM
    108. de Vries J-P
    109. Stefansson K
    110. Thompson JR
    111. de Bakker PIW
    112. Deloukas P
    113. Sayers RD
    114. Harrison SC
    115. van Rij AM
    116. Samani NJ
    117. Bown MJ
    (2017) Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci
    Circulation Research 120:341–353.
    https://doi.org/10.1161/CIRCRESAHA.116.308765
    1. Kunkle BW
    2. Grenier-Boley B
    3. Sims R
    4. Bis JC
    5. Damotte V
    6. Naj AC
    7. Boland A
    8. Vronskaya M
    9. van der Lee SJ
    10. Amlie-Wolf A
    11. Bellenguez C
    12. Frizatti A
    13. Chouraki V
    14. Martin ER
    15. Sleegers K
    16. Badarinarayan N
    17. Jakobsdottir J
    18. Hamilton-Nelson KL
    19. Moreno-Grau S
    20. Olaso R
    21. Raybould R
    22. Chen Y
    23. Kuzma AB
    24. Hiltunen M
    25. Morgan T
    26. Ahmad S
    27. Vardarajan BN
    28. Epelbaum J
    29. Hoffmann P
    30. Boada M
    31. Beecham GW
    32. Garnier J-G
    33. Harold D
    34. Fitzpatrick AL
    35. Valladares O
    36. Moutet M-L
    37. Gerrish A
    38. Smith AV
    39. Qu L
    40. Bacq D
    41. Denning N
    42. Jian X
    43. Zhao Y
    44. Del Zompo M
    45. Fox NC
    46. Choi S-H
    47. Mateo I
    48. Hughes JT
    49. Adams HH
    50. Malamon J
    51. Sanchez-Garcia F
    52. Patel Y
    53. Brody JA
    54. Dombroski BA
    55. Naranjo MCD
    56. Daniilidou M
    57. Eiriksdottir G
    58. Mukherjee S
    59. Wallon D
    60. Uphill J
    61. Aspelund T
    62. Cantwell LB
    63. Garzia F
    64. Galimberti D
    65. Hofer E
    66. Butkiewicz M
    67. Fin B
    68. Scarpini E
    69. Sarnowski C
    70. Bush WS
    71. Meslage S
    72. Kornhuber J
    73. White CC
    74. Song Y
    75. Barber RC
    76. Engelborghs S
    77. Sordon S
    78. Voijnovic D
    79. Adams PM
    80. Vandenberghe R
    81. Mayhaus M
    82. Cupples LA
    83. Albert MS
    84. De Deyn PP
    85. Gu W
    86. Himali JJ
    87. Beekly D
    88. Squassina A
    89. Hartmann AM
    90. Orellana A
    91. Blacker D
    92. Rodriguez-Rodriguez E
    93. Lovestone S
    94. Garcia ME
    95. Doody RS
    96. Munoz-Fernadez C
    97. Sussams R
    98. Lin H
    99. Fairchild TJ
    100. Benito YA
    101. Holmes C
    102. Karamujić-Čomić H
    103. Frosch MP
    104. Thonberg H
    105. Maier W
    106. Roshchupkin G
    107. Ghetti B
    108. Giedraitis V
    109. Kawalia A
    110. Li S
    111. Huebinger RM
    112. Kilander L
    113. Moebus S
    114. Hernández I
    115. Kamboh MI
    116. Brundin R
    117. Turton J
    118. Yang Q
    119. Katz MJ
    120. Concari L
    121. Lord J
    122. Beiser AS
    123. Keene CD
    124. Helisalmi S
    125. Kloszewska I
    126. Kukull WA
    127. Koivisto AM
    128. Lynch A
    129. Tarraga L
    130. Larson EB
    131. Haapasalo A
    132. Lawlor B
    133. Mosley TH
    134. Lipton RB
    135. Solfrizzi V
    136. Gill M
    137. Longstreth WT
    138. Montine TJ
    139. Frisardi V
    140. Diez-Fairen M
    141. Rivadeneira F
    142. Petersen RC
    143. Deramecourt V
    144. Alvarez I
    145. Salani F
    146. Ciaramella A
    147. Boerwinkle E
    148. Reiman EM
    149. Fievet N
    150. Rotter JI
    151. Reisch JS
    152. Hanon O
    153. Cupidi C
    154. Andre Uitterlinden AG
    155. Royall DR
    156. Dufouil C
    157. Maletta RG
    158. de Rojas I
    159. Sano M
    160. Brice A
    161. Cecchetti R
    162. George-Hyslop PS
    163. Ritchie K
    164. Tsolaki M
    165. Tsuang DW
    166. Dubois B
    167. Craig D
    168. Wu C-K
    169. Soininen H
    170. Avramidou D
    171. Albin RL
    172. Fratiglioni L
    173. Germanou A
    174. Apostolova LG
    175. Keller L
    176. Koutroumani M
    177. Arnold SE
    178. Panza F
    179. Gkatzima O
    180. Asthana S
    181. Hannequin D
    182. Whitehead P
    183. Atwood CS
    184. Caffarra P
    185. Hampel H
    186. Quintela I
    187. Carracedo Á
    188. Lannfelt L
    189. Rubinsztein DC
    190. Barnes LL
    191. Pasquier F
    192. Frölich L
    193. Barral S
    194. McGuinness B
    195. Beach TG
    196. Johnston JA
    197. Becker JT
    198. Passmore P
    199. Bigio EH
    200. Schott JM
    201. Bird TD
    202. Warren JD
    203. Boeve BF
    204. Lupton MK
    205. Bowen JD
    206. Proitsi P
    207. Boxer A
    208. Powell JF
    209. Burke JR
    210. Kauwe JSK
    211. Burns JM
    212. Mancuso M
    213. Buxbaum JD
    214. Bonuccelli U
    215. Cairns NJ
    216. McQuillin A
    217. Cao C
    218. Livingston G
    219. Carlson CS
    220. Bass NJ
    221. Carlsson CM
    222. Hardy J
    223. Carney RM
    224. Bras J
    225. Carrasquillo MM
    226. Guerreiro R
    227. Allen M
    228. Chui HC
    229. Fisher E
    230. Masullo C
    231. Crocco EA
    232. DeCarli C
    233. Bisceglio G
    234. Dick M
    235. Ma L
    236. Duara R
    237. Graff-Radford NR
    238. Evans DA
    239. Hodges A
    240. Faber KM
    241. Scherer M
    242. Fallon KB
    243. Riemenschneider M
    244. Fardo DW
    245. Heun R
    246. Farlow MR
    247. Kölsch H
    248. Ferris S
    249. Leber M
    250. Foroud TM
    251. Heuser I
    252. Galasko DR
    253. Giegling I
    254. Gearing M
    255. Hüll M
    256. Geschwind DH
    257. Gilbert JR
    258. Morris J
    259. Green RC
    260. Mayo K
    261. Growdon JH
    262. Feulner T
    263. Hamilton RL
    264. Harrell LE
    265. Drichel D
    266. Honig LS
    267. Cushion TD
    268. Huentelman MJ
    269. Hollingworth P
    270. Hulette CM
    271. Hyman BT
    272. Marshall R
    273. Jarvik GP
    274. Meggy A
    275. Abner E
    276. Menzies GE
    277. Jin L-W
    278. Leonenko G
    279. Real LM
    280. Jun GR
    281. Baldwin CT
    282. Grozeva D
    283. Karydas A
    284. Russo G
    285. Kaye JA
    286. Kim R
    287. Jessen F
    288. Kowall NW
    289. Vellas B
    290. Kramer JH
    291. Vardy E
    292. LaFerla FM
    293. Jöckel K-H
    294. Lah JJ
    295. Dichgans M
    296. Leverenz JB
    297. Mann D
    298. Levey AI
    299. Pickering-Brown S
    300. Lieberman AP
    301. Klopp N
    302. Lunetta KL
    303. Wichmann H-E
    304. Lyketsos CG
    305. Morgan K
    306. Marson DC
    307. Brown K
    308. Martiniuk F
    309. Medway C
    310. Mash DC
    311. Nöthen MM
    312. Masliah E
    313. Hooper NM
    314. McCormick WC
    315. Daniele A
    316. McCurry SM
    317. Bayer A
    318. McDavid AN
    319. Gallacher J
    320. McKee AC
    321. van den Bussche H
    322. Mesulam M
    323. Brayne C
    324. Miller BL
    325. Riedel-Heller S
    326. Miller CA
    327. Miller JW
    328. Al-Chalabi A
    329. Morris JC
    330. Shaw CE
    331. Myers AJ
    332. Wiltfang J
    333. O’Bryant S
    334. Olichney JM
    335. Alvarez V
    336. Parisi JE
    337. Singleton AB
    338. Paulson HL
    339. Collinge J
    340. Perry WR
    341. Mead S
    342. Peskind E
    343. Cribbs DH
    344. Rossor M
    345. Pierce A
    346. Ryan NS
    347. Poon WW
    348. Nacmias B
    349. Potter H
    350. Sorbi S
    351. Quinn JF
    352. Sacchinelli E
    353. Raj A
    354. Spalletta G
    355. Raskind M
    356. Caltagirone C
    357. Bossù P
    358. Orfei MD
    359. Reisberg B
    360. Clarke R
    361. Reitz C
    362. Smith AD
    363. Ringman JM
    364. Warden D
    365. Roberson ED
    366. Wilcock G
    367. Rogaeva E
    368. Bruni AC
    369. Rosen HJ
    370. Gallo M
    371. Rosenberg RN
    372. Ben-Shlomo Y
    373. Sager MA
    374. Mecocci P
    375. Saykin AJ
    376. Pastor P
    377. Cuccaro ML
    378. Vance JM
    379. Schneider JA
    380. Schneider LS
    381. Slifer S
    382. Seeley WW
    383. Smith AG
    384. Sonnen JA
    385. Spina S
    386. Stern RA
    387. Swerdlow RH
    388. Tang M
    389. Tanzi RE
    390. Trojanowski JQ
    391. Troncoso JC
    392. Van Deerlin VM
    393. Van Eldik LJ
    394. Vinters HV
    395. Vonsattel JP
    396. Weintraub S
    397. Welsh-Bohmer KA
    398. Wilhelmsen KC
    399. Williamson J
    400. Wingo TS
    401. Woltjer RL
    402. Wright CB
    403. Yu C-E
    404. Yu L
    405. Saba Y
    406. Pilotto A
    407. Bullido MJ
    408. Peters O
    409. Crane PK
    410. Bennett D
    411. Bosco P
    412. Coto E
    413. Boccardi V
    414. De Jager PL
    415. Lleo A
    416. Warner N
    417. Lopez OL
    418. Ingelsson M
    419. Deloukas P
    420. Cruchaga C
    421. Graff C
    422. Gwilliam R
    423. Fornage M
    424. Goate AM
    425. Sanchez-Juan P
    426. Kehoe PG
    427. Amin N
    428. Ertekin-Taner N
    429. Berr C
    430. Debette S
    431. Love S
    432. Launer LJ
    433. Younkin SG
    434. Dartigues J-F
    435. Corcoran C
    436. Ikram MA
    437. Dickson DW
    438. Nicolas G
    439. Campion D
    440. Tschanz J
    441. Schmidt H
    442. Hakonarson H
    443. Clarimon J
    444. Munger R
    445. Schmidt R
    446. Farrer LA
    447. Van Broeckhoven C
    448. C O’Donovan M
    449. DeStefano AL
    450. Jones L
    451. Haines JL
    452. Deleuze J-F
    453. Owen MJ
    454. Gudnason V
    455. Mayeux R
    456. Escott-Price V
    457. Psaty BM
    458. Ramirez A
    459. Wang L-S
    460. Ruiz A
    461. van Duijn CM
    462. Holmans PA
    463. Seshadri S
    464. Williams J
    465. Amouyel P
    466. Schellenberg GD
    467. Lambert J-C
    468. Pericak-Vance MA
    469. Alzheimer Disease Genetics Consortium (ADGC)
    470. European Alzheimer’s Disease Initiative (EADI)
    471. Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE)
    472. Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES)
    (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing
    Nature Genetics 51:414–430.
    https://doi.org/10.1038/s41588-019-0358-2
    1. Locke AE
    2. Kahali B
    3. Berndt SI
    4. Justice AE
    5. Pers TH
    6. Day FR
    7. Powell C
    8. Vedantam S
    9. Buchkovich ML
    10. Yang J
    11. Croteau-Chonka DC
    12. Esko T
    13. Fall T
    14. Ferreira T
    15. Gustafsson S
    16. Kutalik Z
    17. Luan J
    18. Mägi R
    19. Randall JC
    20. Winkler TW
    21. Wood AR
    22. Workalemahu T
    23. Faul JD
    24. Smith JA
    25. Zhao JH
    26. Zhao W
    27. Chen J
    28. Fehrmann R
    29. Hedman ÅK
    30. Karjalainen J
    31. Schmidt EM
    32. Absher D
    33. Amin N
    34. Anderson D
    35. Beekman M
    36. Bolton JL
    37. Bragg-Gresham JL
    38. Buyske S
    39. Demirkan A
    40. Deng G
    41. Ehret GB
    42. Feenstra B
    43. Feitosa MF
    44. Fischer K
    45. Goel A
    46. Gong J
    47. Jackson AU
    48. Kanoni S
    49. Kleber ME
    50. Kristiansson K
    51. Lim U
    52. Lotay V
    53. Mangino M
    54. Leach IM
    55. Medina-Gomez C
    56. Medland SE
    57. Nalls MA
    58. Palmer CD
    59. Pasko D
    60. Pechlivanis S
    61. Peters MJ
    62. Prokopenko I
    63. Shungin D
    64. Stančáková A
    65. Strawbridge RJ
    66. Sung YJ
    67. Tanaka T
    68. Teumer A
    69. Trompet S
    70. van der Laan SW
    71. van Setten J
    72. Van Vliet-Ostaptchouk JV
    73. Wang Z
    74. Yengo L
    75. Zhang W
    76. Isaacs A
    77. Albrecht E
    78. Ärnlöv J
    79. Arscott GM
    80. Attwood AP
    81. Bandinelli S
    82. Barrett A
    83. Bas IN
    84. Bellis C
    85. Bennett AJ
    86. Berne C
    87. Blagieva R
    88. Blüher M
    89. Böhringer S
    90. Bonnycastle LL
    91. Böttcher Y
    92. Boyd HA
    93. Bruinenberg M
    94. Caspersen IH
    95. Chen Y-DI
    96. Clarke R
    97. Daw EW
    98. de Craen AJM
    99. Delgado G
    100. Dimitriou M
    101. Doney ASF
    102. Eklund N
    103. Estrada K
    104. Eury E
    105. Folkersen L
    106. Fraser RM
    107. Garcia ME
    108. Geller F
    109. Giedraitis V
    110. Gigante B
    111. Go AS
    112. Golay A
    113. Goodall AH
    114. Gordon SD
    115. Gorski M
    116. Grabe H-J
    117. Grallert H
    118. Grammer TB
    119. Gräßler J
    120. Grönberg H
    121. Groves CJ
    122. Gusto G
    123. Haessler J
    124. Hall P
    125. Haller T
    126. Hallmans G
    127. Hartman CA
    128. Hassinen M
    129. Hayward C
    130. Heard-Costa NL
    131. Helmer Q
    132. Hengstenberg C
    133. Holmen O
    134. Hottenga J-J
    135. James AL
    136. Jeff JM
    137. Johansson Å
    138. Jolley J
    139. Juliusdottir T
    140. Kinnunen L
    141. Koenig W
    142. Koskenvuo M
    143. Kratzer W
    144. Laitinen J
    145. Lamina C
    146. Leander K
    147. Lee NR
    148. Lichtner P
    149. Lind L
    150. Lindström J
    151. Lo KS
    152. Lobbens S
    153. Lorbeer R
    154. Lu Y
    155. Mach F
    156. Magnusson PKE
    157. Mahajan A
    158. McArdle WL
    159. McLachlan S
    160. Menni C
    161. Merger S
    162. Mihailov E
    163. Milani L
    164. Moayyeri A
    165. Monda KL
    166. Morken MA
    167. Mulas A
    168. Müller G
    169. Müller-Nurasyid M
    170. Musk AW
    171. Nagaraja R
    172. Nöthen MM
    173. Nolte IM
    174. Pilz S
    175. Rayner NW
    176. Renstrom F
    177. Rettig R
    178. Ried JS
    179. Ripke S
    180. Robertson NR
    181. Rose LM
    182. Sanna S
    183. Scharnagl H
    184. Scholtens S
    185. Schumacher FR
    186. Scott WR
    187. Seufferlein T
    188. Shi J
    189. Smith AV
    190. Smolonska J
    191. Stanton AV
    192. Steinthorsdottir V
    193. Stirrups K
    194. Stringham HM
    195. Sundström J
    196. Swertz MA
    197. Swift AJ
    198. Syvänen A-C
    199. Tan S-T
    200. Tayo BO
    201. Thorand B
    202. Thorleifsson G
    203. Tyrer JP
    204. Uh H-W
    205. Vandenput L
    206. Verhulst FC
    207. Vermeulen SH
    208. Verweij N
    209. Vonk JM
    210. Waite LL
    211. Warren HR
    212. Waterworth D
    213. Weedon MN
    214. Wilkens LR
    215. Willenborg C
    216. Wilsgaard T
    217. Wojczynski MK
    218. Wong A
    219. Wright AF
    220. Zhang Q
    221. LifeLines Cohort Study
    222. Brennan EP
    223. Choi M
    224. Dastani Z
    225. Drong AW
    226. Eriksson P
    227. Franco-Cereceda A
    228. Gådin JR
    229. Gharavi AG
    230. Goddard ME
    231. Handsaker RE
    232. Huang J
    233. Karpe F
    234. Kathiresan S
    235. Keildson S
    236. Kiryluk K
    237. Kubo M
    238. Lee J-Y
    239. Liang L
    240. Lifton RP
    241. Ma B
    242. McCarroll SA
    243. McKnight AJ
    244. Min JL
    245. Moffatt MF
    246. Montgomery GW
    247. Murabito JM
    248. Nicholson G
    249. Nyholt DR
    250. Okada Y
    251. Perry JRB
    252. Dorajoo R
    253. Reinmaa E
    254. Salem RM
    255. Sandholm N
    256. Scott RA
    257. Stolk L
    258. Takahashi A
    259. Tanaka T
    260. van ’t Hooft FM
    261. Vinkhuyzen AAE
    262. Westra H-J
    263. Zheng W
    264. Zondervan KT
    265. ADIPOGen Consortium
    266. AGEN-BMI Working Group
    267. CARDIOGRAMplusC4D Consortium
    268. CKDGen Consortium
    269. GLGC
    270. ICBP
    271. MAGIC Investigators
    272. MuTHER Consortium
    273. MIGen Consortium
    274. PAGE Consortium
    275. ReproGen Consortium
    276. GENIE Consortium
    277. International Endogene Consortium
    278. Heath AC
    279. Arveiler D
    280. Bakker SJL
    281. Beilby J
    282. Bergman RN
    283. Blangero J
    284. Bovet P
    285. Campbell H
    286. Caulfield MJ
    287. Cesana G
    288. Chakravarti A
    289. Chasman DI
    290. Chines PS
    291. Collins FS
    292. Crawford DC
    293. Cupples LA
    294. Cusi D
    295. Danesh J
    296. de Faire U
    297. den Ruijter HM
    298. Dominiczak AF
    299. Erbel R
    300. Erdmann J
    301. Eriksson JG
    302. Farrall M
    303. Felix SB
    304. Ferrannini E
    305. Ferrières J
    306. Ford I
    307. Forouhi NG
    308. Forrester T
    309. Franco OH
    310. Gansevoort RT
    311. Gejman PV
    312. Gieger C
    313. Gottesman O
    314. Gudnason V
    315. Gyllensten U
    316. Hall AS
    317. Harris TB
    318. Hattersley AT
    319. Hicks AA
    320. Hindorff LA
    321. Hingorani AD
    322. Hofman A
    323. Homuth G
    324. Hovingh GK
    325. Humphries SE
    326. Hunt SC
    327. Hyppönen E
    328. Illig T
    329. Jacobs KB
    330. Jarvelin M-R
    331. Jöckel K-H
    332. Johansen B
    333. Jousilahti P
    334. Jukema JW
    335. Jula AM
    336. Kaprio J
    337. Kastelein JJP
    338. Keinanen-Kiukaanniemi SM
    339. Kiemeney LA
    340. Knekt P
    341. Kooner JS
    342. Kooperberg C
    343. Kovacs P
    344. Kraja AT
    345. Kumari M
    346. Kuusisto J
    347. Lakka TA
    348. Langenberg C
    349. Marchand LL
    350. Lehtimäki T
    351. Lyssenko V
    352. Männistö S
    353. Marette A
    354. Matise TC
    355. McKenzie CA
    356. McKnight B
    357. Moll FL
    358. Morris AD
    359. Morris AP
    360. Murray JC
    361. Nelis M
    362. Ohlsson C
    363. Oldehinkel AJ
    364. Ong KK
    365. Madden PAF
    366. Pasterkamp G
    367. Peden JF
    368. Peters A
    369. Postma DS
    370. Pramstaller PP
    371. Price JF
    372. Qi L
    373. Raitakari OT
    374. Rankinen T
    375. Rao DC
    376. Rice TK
    377. Ridker PM
    378. Rioux JD
    379. Ritchie MD
    380. Rudan I
    381. Salomaa V
    382. Samani NJ
    383. Saramies J
    384. Sarzynski MA
    385. Schunkert H
    386. Schwarz PEH
    387. Sever P
    388. Shuldiner AR
    389. Sinisalo J
    390. Stolk RP
    391. Strauch K
    392. Tönjes A
    393. Trégouët D-A
    394. Tremblay A
    395. Tremoli E
    396. Virtamo J
    397. Vohl M-C
    398. Völker U
    399. Waeber G
    400. Willemsen G
    401. Witteman JC
    402. Zillikens MC
    403. Adair LS
    404. Amouyel P
    405. Asselbergs FW
    406. Assimes TL
    407. Bochud M
    408. Boehm BO
    409. Boerwinkle E
    410. Bornstein SR
    411. Bottinger EP
    412. Bouchard C
    413. Cauchi S
    414. Chambers JC
    415. Chanock SJ
    416. Cooper RS
    417. de Bakker PIW
    418. Dedoussis G
    419. Ferrucci L
    420. Franks PW
    421. Froguel P
    422. Groop LC
    423. Haiman CA
    424. Hamsten A
    425. Hui J
    426. Hunter DJ
    427. Hveem K
    428. Kaplan RC
    429. Kivimaki M
    430. Kuh D
    431. Laakso M
    432. Liu Y
    433. Martin NG
    434. März W
    435. Melbye M
    436. Metspalu A
    437. Moebus S
    438. Munroe PB
    439. Njølstad I
    440. Oostra BA
    441. Palmer CNA
    442. Pedersen NL
    443. Perola M
    444. Pérusse L
    445. Peters U
    446. Power C
    447. Quertermous T
    448. Rauramaa R
    449. Rivadeneira F
    450. Saaristo TE
    451. Saleheen D
    452. Sattar N
    453. Schadt EE
    454. Schlessinger D
    455. Slagboom PE
    456. Snieder H
    457. Spector TD
    458. Thorsteinsdottir U
    459. Stumvoll M
    460. Tuomilehto J
    461. Uitterlinden AG
    462. Uusitupa M
    463. van der Harst P
    464. Walker M
    465. Wallaschofski H
    466. Wareham NJ
    467. Watkins H
    468. Weir DR
    469. Wichmann H-E
    470. Wilson JF
    471. Zanen P
    472. Borecki IB
    473. Deloukas P
    474. Fox CS
    475. Heid IM
    476. O’Connell JR
    477. Strachan DP
    478. Stefansson K
    479. van Duijn CM
    480. Abecasis GR
    481. Franke L
    482. Frayling TM
    483. McCarthy MI
    484. Visscher PM
    485. Scherag A
    486. Willer CJ
    487. Boehnke M
    488. Mohlke KL
    489. Lindgren CM
    490. Beckmann JS
    491. Barroso I
    492. North KE
    493. Ingelsson E
    494. Hirschhorn JN
    495. Loos RJF
    496. Speliotes EK
    (2015) Genetic studies of body mass index yield new insights for obesity biology
    Nature 518:197–206.
    https://doi.org/10.1038/nature14177
    1. Malik R
    2. Chauhan G
    3. Traylor M
    4. Sargurupremraj M
    5. Okada Y
    6. Mishra A
    7. Rutten-Jacobs L
    8. Giese A-K
    9. van der Laan SW
    10. Gretarsdottir S
    11. Anderson CD
    12. Chong M
    13. Adams HHH
    14. Ago T
    15. Almgren P
    16. Amouyel P
    17. Ay H
    18. Bartz TM
    19. Benavente OR
    20. Bevan S
    21. Boncoraglio GB
    22. Brown RD
    23. Butterworth AS
    24. Carrera C
    25. Carty CL
    26. Chasman DI
    27. Chen W-M
    28. Cole JW
    29. Correa A
    30. Cotlarciuc I
    31. Cruchaga C
    32. Danesh J
    33. de Bakker PIW
    34. DeStefano AL
    35. den Hoed M
    36. Duan Q
    37. Engelter ST
    38. Falcone GJ
    39. Gottesman RF
    40. Grewal RP
    41. Gudnason V
    42. Gustafsson S
    43. Haessler J
    44. Harris TB
    45. Hassan A
    46. Havulinna AS
    47. Heckbert SR
    48. Holliday EG
    49. Howard G
    50. Hsu F-C
    51. Hyacinth HI
    52. Ikram MA
    53. Ingelsson E
    54. Irvin MR
    55. Jian X
    56. Jiménez-Conde J
    57. Johnson JA
    58. Jukema JW
    59. Kanai M
    60. Keene KL
    61. Kissela BM
    62. Kleindorfer DO
    63. Kooperberg C
    64. Kubo M
    65. Lange LA
    66. Langefeld CD
    67. Langenberg C
    68. Launer LJ
    69. Lee J-M
    70. Lemmens R
    71. Leys D
    72. Lewis CM
    73. Lin W-Y
    74. Lindgren AG
    75. Lorentzen E
    76. Magnusson PK
    77. Maguire J
    78. Manichaikul A
    79. McArdle PF
    80. Meschia JF
    81. Mitchell BD
    82. Mosley TH
    83. Nalls MA
    84. Ninomiya T
    85. O’Donnell MJ
    86. Psaty BM
    87. Pulit SL
    88. Rannikmäe K
    89. Reiner AP
    90. Rexrode KM
    91. Rice K
    92. Rich SS
    93. Ridker PM
    94. Rost NS
    95. Rothwell PM
    96. Rotter JI
    97. Rundek T
    98. Sacco RL
    99. Sakaue S
    100. Sale MM
    101. Salomaa V
    102. Sapkota BR
    103. Schmidt R
    104. Schmidt CO
    105. Schminke U
    106. Sharma P
    107. Slowik A
    108. Sudlow CLM
    109. Tanislav C
    110. Tatlisumak T
    111. Taylor KD
    112. Thijs VNS
    113. Thorleifsson G
    114. Thorsteinsdottir U
    115. Tiedt S
    116. Trompet S
    117. Tzourio C
    118. van Duijn CM
    119. Walters M
    120. Wareham NJ
    121. Wassertheil-Smoller S
    122. Wilson JG
    123. Wiggins KL
    124. Yang Q
    125. Yusuf S
    126. AFGen Consortium
    127. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium
    128. International Genomics of Blood Pressure (iGEN-BP) Consortium
    129. INVENT Consortium
    130. STARNET
    131. Bis JC
    132. Pastinen T
    133. Ruusalepp A
    134. Schadt EE
    135. Koplev S
    136. Björkegren JLM
    137. Codoni V
    138. Civelek M
    139. Smith NL
    140. Trégouët DA
    141. Christophersen IE
    142. Roselli C
    143. Lubitz SA
    144. Ellinor PT
    145. Tai ES
    146. Kooner JS
    147. Kato N
    148. He J
    149. van der Harst P
    150. Elliott P
    151. Chambers JC
    152. Takeuchi F
    153. Johnson AD
    154. BioBank Japan Cooperative Hospital Group
    155. COMPASS Consortium
    156. EPIC-CVD Consortium
    157. EPIC-InterAct Consortium
    158. International Stroke Genetics Consortium (ISGC)
    159. METASTROKE Consortium
    160. Neurology Working Group of the CHARGE Consortium
    161. NINDS Stroke Genetics Network (SiGN)
    162. UK Young Lacunar DNA Study
    163. MEGASTROKE Consortium
    164. Sanghera DK
    165. Melander O
    166. Jern C
    167. Strbian D
    168. Fernandez-Cadenas I
    169. Longstreth WT
    170. Rolfs A
    171. Hata J
    172. Woo D
    173. Rosand J
    174. Pare G
    175. Hopewell JC
    176. Saleheen D
    177. Stefansson K
    178. Worrall BB
    179. Kittner SJ
    180. Seshadri S
    181. Fornage M
    182. Markus HS
    183. Howson JMM
    184. Kamatani Y
    185. Debette S
    186. Dichgans M
    (2018) Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes
    Nature Genetics 50:524–537.
    https://doi.org/10.1038/s41588-018-0058-3
    1. Michailidou K
    2. Lindström S
    3. Dennis J
    4. Beesley J
    5. Hui S
    6. Kar S
    7. Lemaçon A
    8. Soucy P
    9. Glubb D
    10. Rostamianfar A
    11. Bolla MK
    12. Wang Q
    13. Tyrer J
    14. Dicks E
    15. Lee A
    16. Wang Z
    17. Allen J
    18. Keeman R
    19. Eilber U
    20. French JD
    21. Qing Chen X
    22. Fachal L
    23. McCue K
    24. McCart Reed AE
    25. Ghoussaini M
    26. Carroll JS
    27. Jiang X
    28. Finucane H
    29. Adams M
    30. Adank MA
    31. Ahsan H
    32. Aittomäki K
    33. Anton-Culver H
    34. Antonenkova NN
    35. Arndt V
    36. Aronson KJ
    37. Arun B
    38. Auer PL
    39. Bacot F
    40. Barrdahl M
    41. Baynes C
    42. Beckmann MW
    43. Behrens S
    44. Benitez J
    45. Bermisheva M
    46. Bernstein L
    47. Blomqvist C
    48. Bogdanova NV
    49. Bojesen SE
    50. Bonanni B
    51. Børresen-Dale A-L
    52. Brand JS
    53. Brauch H
    54. Brennan P
    55. Brenner H
    56. Brinton L
    57. Broberg P
    58. Brock IW
    59. Broeks A
    60. Brooks-Wilson A
    61. Brucker SY
    62. Brüning T
    63. Burwinkel B
    64. Butterbach K
    65. Cai Q
    66. Cai H
    67. Caldés T
    68. Canzian F
    69. Carracedo A
    70. Carter BD
    71. Castelao JE
    72. Chan TL
    73. David Cheng T-Y
    74. Seng Chia K
    75. Choi J-Y
    76. Christiansen H
    77. Clarke CL
    78. NBCS Collaborators
    79. Collée M
    80. Conroy DM
    81. Cordina-Duverger E
    82. Cornelissen S
    83. Cox DG
    84. Cox A
    85. Cross SS
    86. Cunningham JM
    87. Czene K
    88. Daly MB
    89. Devilee P
    90. Doheny KF
    91. Dörk T
    92. Dos-Santos-Silva I
    93. Dumont M
    94. Durcan L
    95. Dwek M
    96. Eccles DM
    97. Ekici AB
    98. Eliassen AH
    99. Ellberg C
    100. Elvira M
    101. Engel C
    102. Eriksson M
    103. Fasching PA
    104. Figueroa J
    105. Flesch-Janys D
    106. Fletcher O
    107. Flyger H
    108. Fritschi L
    109. Gaborieau V
    110. Gabrielson M
    111. Gago-Dominguez M
    112. Gao Y-T
    113. Gapstur SM
    114. García-Sáenz JA
    115. Gaudet MM
    116. Georgoulias V
    117. Giles GG
    118. Glendon G
    119. Goldberg MS
    120. Goldgar DE
    121. González-Neira A
    122. Grenaker Alnæs GI
    123. Grip M
    124. Gronwald J
    125. Grundy A
    126. Guénel P
    127. Haeberle L
    128. Hahnen E
    129. Haiman CA
    130. Håkansson N
    131. Hamann U
    132. Hamel N
    133. Hankinson S
    134. Harrington P
    135. Hart SN
    136. Hartikainen JM
    137. Hartman M
    138. Hein A
    139. Heyworth J
    140. Hicks B
    141. Hillemanns P
    142. Ho DN
    143. Hollestelle A
    144. Hooning MJ
    145. Hoover RN
    146. Hopper JL
    147. Hou M-F
    148. Hsiung C-N
    149. Huang G
    150. Humphreys K
    151. Ishiguro J
    152. Ito H
    153. Iwasaki M
    154. Iwata H
    155. Jakubowska A
    156. Janni W
    157. John EM
    158. Johnson N
    159. Jones K
    160. Jones M
    161. Jukkola-Vuorinen A
    162. Kaaks R
    163. Kabisch M
    164. Kaczmarek K
    165. Kang D
    166. Kasuga Y
    167. Kerin MJ
    168. Khan S
    169. Khusnutdinova E
    170. Kiiski JI
    171. Kim S-W
    172. Knight JA
    173. Kosma V-M
    174. Kristensen VN
    175. Krüger U
    176. Kwong A
    177. Lambrechts D
    178. Le Marchand L
    179. Lee E
    180. Lee MH
    181. Lee JW
    182. Neng Lee C
    183. Lejbkowicz F
    184. Li J
    185. Lilyquist J
    186. Lindblom A
    187. Lissowska J
    188. Lo W-Y
    189. Loibl S
    190. Long J
    191. Lophatananon A
    192. Lubinski J
    193. Luccarini C
    194. Lux MP
    195. Ma ESK
    196. MacInnis RJ
    197. Maishman T
    198. Makalic E
    199. Malone KE
    200. Kostovska IM
    201. Mannermaa A
    202. Manoukian S
    203. Manson JE
    204. Margolin S
    205. Mariapun S
    206. Martinez ME
    207. Matsuo K
    208. Mavroudis D
    209. McKay J
    210. McLean C
    211. Meijers-Heijboer H
    212. Meindl A
    213. Menéndez P
    214. Menon U
    215. Meyer J
    216. Miao H
    217. Miller N
    218. Taib NAM
    219. Muir K
    220. Mulligan AM
    221. Mulot C
    222. Neuhausen SL
    223. Nevanlinna H
    224. Neven P
    225. Nielsen SF
    226. Noh D-Y
    227. Nordestgaard BG
    228. Norman A
    229. Olopade OI
    230. Olson JE
    231. Olsson H
    232. Olswold C
    233. Orr N
    234. Pankratz VS
    235. Park SK
    236. Park-Simon T-W
    237. Lloyd R
    238. Perez JIA
    239. Peterlongo P
    240. Peto J
    241. Phillips K-A
    242. Pinchev M
    243. Plaseska-Karanfilska D
    244. Prentice R
    245. Presneau N
    246. Prokofyeva D
    247. Pugh E
    248. Pylkäs K
    249. Rack B
    250. Radice P
    251. Rahman N
    252. Rennert G
    253. Rennert HS
    254. Rhenius V
    255. Romero A
    256. Romm J
    257. Ruddy KJ
    258. Rüdiger T
    259. Rudolph A
    260. Ruebner M
    261. Rutgers EJT
    262. Saloustros E
    263. Sandler DP
    264. Sangrajrang S
    265. Sawyer EJ
    266. Schmidt DF
    267. Schmutzler RK
    268. Schneeweiss A
    269. Schoemaker MJ
    270. Schumacher F
    271. Schürmann P
    272. Scott RJ
    273. Scott C
    274. Seal S
    275. Seynaeve C
    276. Shah M
    277. Sharma P
    278. Shen C-Y
    279. Sheng G
    280. Sherman ME
    281. Shrubsole MJ
    282. Shu X-O
    283. Smeets A
    284. Sohn C
    285. Southey MC
    286. Spinelli JJ
    287. Stegmaier C
    288. Stewart-Brown S
    289. Stone J
    290. Stram DO
    291. Surowy H
    292. Swerdlow A
    293. Tamimi R
    294. Taylor JA
    295. Tengström M
    296. Teo SH
    297. Beth Terry M
    298. Tessier DC
    299. Thanasitthichai S
    300. Thöne K
    301. Tollenaar RAEM
    302. Tomlinson I
    303. Tong L
    304. Torres D
    305. Truong T
    306. Tseng C-C
    307. Tsugane S
    308. Ulmer H-U
    309. Ursin G
    310. Untch M
    311. Vachon C
    312. van Asperen CJ
    313. Van Den Berg D
    314. van den Ouweland AMW
    315. van der Kolk L
    316. van der Luijt RB
    317. Vincent D
    318. Vollenweider J
    319. Waisfisz Q
    320. Wang-Gohrke S
    321. Weinberg CR
    322. Wendt C
    323. Whittemore AS
    324. Wildiers H
    325. Willett W
    326. Winqvist R
    327. Wolk A
    328. Wu AH
    329. Xia L
    330. Yamaji T
    331. Yang XR
    332. Har Yip C
    333. Yoo K-Y
    334. Yu J-C
    335. Zheng W
    336. Zheng Y
    337. Zhu B
    338. Ziogas A
    339. Ziv E
    340. ABCTB Investigators
    341. ConFab/AOCS Investigators
    342. Lakhani SR
    343. Antoniou AC
    344. Droit A
    345. Andrulis IL
    346. Amos CI
    347. Couch FJ
    348. Pharoah PDP
    349. Chang-Claude J
    350. Hall P
    351. Hunter DJ
    352. Milne RL
    353. García-Closas M
    354. Schmidt MK
    355. Chanock SJ
    356. Dunning AM
    357. Edwards SL
    358. Bader GD
    359. Chenevix-Trench G
    360. Simard J
    361. Kraft P
    362. Easton DF
    (2017) Association analysis identifies 65 new breast cancer risk loci
    Nature 551:92–94.
    https://doi.org/10.1038/nature24284
    1. Nikpay M
    2. Goel A
    3. Won H-H
    4. Hall LM
    5. Willenborg C
    6. Kanoni S
    7. Saleheen D
    8. Kyriakou T
    9. Nelson CP
    10. Hopewell JC
    11. Webb TR
    12. Zeng L
    13. Dehghan A
    14. Alver M
    15. Armasu SM
    16. Auro K
    17. Bjonnes A
    18. Chasman DI
    19. Chen S
    20. Ford I
    21. Franceschini N
    22. Gieger C
    23. Grace C
    24. Gustafsson S
    25. Huang J
    26. Hwang S-J
    27. Kim YK
    28. Kleber ME
    29. Lau KW
    30. Lu X
    31. Lu Y
    32. Lyytikäinen L-P
    33. Mihailov E
    34. Morrison AC
    35. Pervjakova N
    36. Qu L
    37. Rose LM
    38. Salfati E
    39. Saxena R
    40. Scholz M
    41. Smith AV
    42. Tikkanen E
    43. Uitterlinden A
    44. Yang X
    45. Zhang W
    46. Zhao W
    47. de Andrade M
    48. de Vries PS
    49. van Zuydam NR
    50. Anand SS
    51. Bertram L
    52. Beutner F
    53. Dedoussis G
    54. Frossard P
    55. Gauguier D
    56. Goodall AH
    57. Gottesman O
    58. Haber M
    59. Han B-G
    60. Huang J
    61. Jalilzadeh S
    62. Kessler T
    63. König IR
    64. Lannfelt L
    65. Lieb W
    66. Lind L
    67. Lindgren CM
    68. Lokki M-L
    69. Magnusson PK
    70. Mallick NH
    71. Mehra N
    72. Meitinger T
    73. Memon F-U-R
    74. Morris AP
    75. Nieminen MS
    76. Pedersen NL
    77. Peters A
    78. Rallidis LS
    79. Rasheed A
    80. Samuel M
    81. Shah SH
    82. Sinisalo J
    83. Stirrups KE
    84. Trompet S
    85. Wang L
    86. Zaman KS
    87. Ardissino D
    88. Boerwinkle E
    89. Borecki IB
    90. Bottinger EP
    91. Buring JE
    92. Chambers JC
    93. Collins R
    94. Cupples LA
    95. Danesh J
    96. Demuth I
    97. Elosua R
    98. Epstein SE
    99. Esko T
    100. Feitosa MF
    101. Franco OH
    102. Franzosi MG
    103. Granger CB
    104. Gu D
    105. Gudnason V
    106. Hall AS
    107. Hamsten A
    108. Harris TB
    109. Hazen SL
    110. Hengstenberg C
    111. Hofman A
    112. Ingelsson E
    113. Iribarren C
    114. Jukema JW
    115. Karhunen PJ
    116. Kim B-J
    117. Kooner JS
    118. Kullo IJ
    119. Lehtimäki T
    120. Loos RJF
    121. Melander O
    122. Metspalu A
    123. März W
    124. Palmer CN
    125. Perola M
    126. Quertermous T
    127. Rader DJ
    128. Ridker PM
    129. Ripatti S
    130. Roberts R
    131. Salomaa V
    132. Sanghera DK
    133. Schwartz SM
    134. Seedorf U
    135. Stewart AF
    136. Stott DJ
    137. Thiery J
    138. Zalloua PA
    139. O’Donnell CJ
    140. Reilly MP
    141. Assimes TL
    142. Thompson JR
    143. Erdmann J
    144. Clarke R
    145. Watkins H
    146. Kathiresan S
    147. McPherson R
    148. Deloukas P
    149. Schunkert H
    150. Samani NJ
    151. Farrall M
    (2015) A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease
    Nature Genetics 47:1121–1130.
    https://doi.org/10.1038/ng.3396
    1. Phelan CM
    2. Kuchenbaecker KB
    3. Tyrer JP
    4. Kar SP
    5. Lawrenson K
    6. Winham SJ
    7. Dennis J
    8. Pirie A
    9. Riggan MJ
    10. Chornokur G
    11. Earp MA
    12. Lyra PC
    13. Lee JM
    14. Coetzee S
    15. Beesley J
    16. McGuffog L
    17. Soucy P
    18. Dicks E
    19. Lee A
    20. Barrowdale D
    21. Lecarpentier J
    22. Leslie G
    23. Aalfs CM
    24. Aben KKH
    25. Adams M
    26. Adlard J
    27. Andrulis IL
    28. Anton-Culver H
    29. Antonenkova N
    30. AOCS study group
    31. Aravantinos G
    32. Arnold N
    33. Arun BK
    34. Arver B
    35. Azzollini J
    36. Balmaña J
    37. Banerjee SN
    38. Barjhoux L
    39. Barkardottir RB
    40. Bean Y
    41. Beckmann MW
    42. Beeghly-Fadiel A
    43. Benitez J
    44. Bermisheva M
    45. Bernardini MQ
    46. Birrer MJ
    47. Bjorge L
    48. Black A
    49. Blankstein K
    50. Blok MJ
    51. Bodelon C
    52. Bogdanova N
    53. Bojesen A
    54. Bonanni B
    55. Borg Å
    56. Bradbury AR
    57. Brenton JD
    58. Brewer C
    59. Brinton L
    60. Broberg P
    61. Brooks-Wilson A
    62. Bruinsma F
    63. Brunet J
    64. Buecher B
    65. Butzow R
    66. Buys SS
    67. Caldes T
    68. Caligo MA
    69. Campbell I
    70. Cannioto R
    71. Carney ME
    72. Cescon T
    73. Chan SB
    74. Chang-Claude J
    75. Chanock S
    76. Chen XQ
    77. Chiew Y-E
    78. Chiquette J
    79. Chung WK
    80. Claes KBM
    81. Conner T
    82. Cook LS
    83. Cook J
    84. Cramer DW
    85. Cunningham JM
    86. D’Aloisio AA
    87. Daly MB
    88. Damiola F
    89. Damirovna SD
    90. Dansonka-Mieszkowska A
    91. Dao F
    92. Davidson R
    93. DeFazio A
    94. Delnatte C
    95. Doheny KF
    96. Diez O
    97. Ding YC
    98. Doherty JA
    99. Domchek SM
    100. Dorfling CM
    101. Dörk T
    102. Dossus L
    103. Duran M
    104. Dürst M
    105. Dworniczak B
    106. Eccles D
    107. Edwards T
    108. Eeles R
    109. Eilber U
    110. Ejlertsen B
    111. Ekici AB
    112. Ellis S
    113. Elvira M
    114. EMBRACE Study
    115. Eng KH
    116. Engel C
    117. Evans DG
    118. Fasching PA
    119. Ferguson S
    120. Ferrer SF
    121. Flanagan JM
    122. Fogarty ZC
    123. Fortner RT
    124. Fostira F
    125. Foulkes WD
    126. Fountzilas G
    127. Fridley BL
    128. Friebel TM
    129. Friedman E
    130. Frost D
    131. Ganz PA
    132. Garber J
    133. García MJ
    134. Garcia-Barberan V
    135. Gehrig A
    136. GEMO Study Collaborators
    137. Gentry-Maharaj A
    138. Gerdes A-M
    139. Giles GG
    140. Glasspool R
    141. Glendon G
    142. Godwin AK
    143. Goldgar DE
    144. Goranova T
    145. Gore M
    146. Greene MH
    147. Gronwald J
    148. Gruber S
    149. Hahnen E
    150. Haiman CA
    151. Håkansson N
    152. Hamann U
    153. Hansen TVO
    154. Harrington PA
    155. Harris HR
    156. Hauke J
    157. HEBON Study
    158. Hein A
    159. Henderson A
    160. Hildebrandt MAT
    161. Hillemanns P
    162. Hodgson S
    163. Høgdall CK
    164. Høgdall E
    165. Hogervorst FBL
    166. Holland H
    167. Hooning MJ
    168. Hosking K
    169. Huang R-Y
    170. Hulick PJ
    171. Hung J
    172. Hunter DJ
    173. Huntsman DG
    174. Huzarski T
    175. Imyanitov EN
    176. Isaacs C
    177. Iversen ES
    178. Izatt L
    179. Izquierdo A
    180. Jakubowska A
    181. James P
    182. Janavicius R
    183. Jernetz M
    184. Jensen A
    185. Jensen UB
    186. John EM
    187. Johnatty S
    188. Jones ME
    189. Kannisto P
    190. Karlan BY
    191. Karnezis A
    192. Kast K
    193. KConFab Investigators
    194. Kennedy CJ
    195. Khusnutdinova E
    196. Kiemeney LA
    197. Kiiski JI
    198. Kim S-W
    199. Kjaer SK
    200. Köbel M
    201. Kopperud RK
    202. Kruse TA
    203. Kupryjanczyk J
    204. Kwong A
    205. Laitman Y
    206. Lambrechts D
    207. Larrañaga N
    208. Larson MC
    209. Lazaro C
    210. Le ND
    211. Le Marchand L
    212. Lee JW
    213. Lele SB
    214. Leminen A
    215. Leroux D
    216. Lester J
    217. Lesueur F
    218. Levine DA
    219. Liang D
    220. Liebrich C
    221. Lilyquist J
    222. Lipworth L
    223. Lissowska J
    224. Lu KH
    225. Lubinński J
    226. Luccarini C
    227. Lundvall L
    228. Mai PL
    229. Mendoza-Fandiño G
    230. Manoukian S
    231. Massuger LFAG
    232. May T
    233. Mazoyer S
    234. McAlpine JN
    235. McGuire V
    236. McLaughlin JR
    237. McNeish I
    238. Meijers-Heijboer H
    239. Meindl A
    240. Menon U
    241. Mensenkamp AR
    242. Merritt MA
    243. Milne RL
    244. Mitchell G
    245. Modugno F
    246. Moes-Sosnowska J
    247. Moffitt M
    248. Montagna M
    249. Moysich KB
    250. Mulligan AM
    251. Musinsky J
    252. Nathanson KL
    253. Nedergaard L
    254. Ness RB
    255. Neuhausen SL
    256. Nevanlinna H
    257. Niederacher D
    258. Nussbaum RL
    259. Odunsi K
    260. Olah E
    261. Olopade OI
    262. Olsson H
    263. Olswold C
    264. O’Malley DM
    265. Ong K-R
    266. Onland-Moret NC
    267. OPAL study group
    268. Orr N
    269. Orsulic S
    270. Osorio A
    271. Palli D
    272. Papi L
    273. Park-Simon T-W
    274. Paul J
    275. Pearce CL
    276. Pedersen IS
    277. Peeters PHM
    278. Peissel B
    279. Peixoto A
    280. Pejovic T
    281. Pelttari LM
    282. Permuth JB
    283. Peterlongo P
    284. Pezzani L
    285. Pfeiler G
    286. Phillips K-A
    287. Piedmonte M
    288. Pike MC
    289. Piskorz AM
    290. Poblete SR
    291. Pocza T
    292. Poole EM
    293. Poppe B
    294. Porteous ME
    295. Prieur F
    296. Prokofyeva D
    297. Pugh E
    298. Pujana MA
    299. Pujol P
    300. Radice P
    301. Rantala J
    302. Rappaport-Fuerhauser C
    303. Rennert G
    304. Rhiem K
    305. Rice P
    306. Richardson A
    307. Robson M
    308. Rodriguez GC
    309. Rodríguez-Antona C
    310. Romm J
    311. Rookus MA
    312. Rossing MA
    313. Rothstein JH
    314. Rudolph A
    315. Runnebaum IB
    316. Salvesen HB
    317. Sandler DP
    318. Schoemaker MJ
    319. Senter L
    320. Setiawan VW
    321. Severi G
    322. Sharma P
    323. Shelford T
    324. Siddiqui N
    325. Side LE
    326. Sieh W
    327. Singer CF
    328. Sobol H
    329. Song H
    330. Southey MC
    331. Spurdle AB
    332. Stadler Z
    333. Steinemann D
    334. Stoppa-Lyonnet D
    335. Sucheston-Campbell LE
    336. Sukiennicki G
    337. Sutphen R
    338. Sutter C
    339. Swerdlow AJ
    340. Szabo CI
    341. Szafron L
    342. Tan YY
    343. Taylor JA
    344. Tea M-K
    345. Teixeira MR
    346. Teo S-H
    347. Terry KL
    348. Thompson PJ
    349. Thomsen LCV
    350. Thull DL
    351. Tihomirova L
    352. Tinker AV
    353. Tischkowitz M
    354. Tognazzo S
    355. Toland AE
    356. Tone A
    357. Trabert B
    358. Travis RC
    359. Trichopoulou A
    360. Tung N
    361. Tworoger SS
    362. van Altena AM
    363. Van Den Berg D
    364. van der Hout AH
    365. van der Luijt RB
    366. Van Heetvelde M
    367. Van Nieuwenhuysen E
    368. van Rensburg EJ
    369. Vanderstichele A
    370. Varon-Mateeva R
    371. Vega A
    372. Edwards DV
    373. Vergote I
    374. Vierkant RA
    375. Vijai J
    376. Vratimos A
    377. Walker L
    378. Walsh C
    379. Wand D
    380. Wang-Gohrke S
    381. Wappenschmidt B
    382. Webb PM
    383. Weinberg CR
    384. Weitzel JN
    385. Wentzensen N
    386. Whittemore AS
    387. Wijnen JT
    388. Wilkens LR
    389. Wolk A
    390. Woo M
    391. Wu X
    392. Wu AH
    393. Yang H
    394. Yannoukakos D
    395. Ziogas A
    396. Zorn KK
    397. Narod SA
    398. Easton DF
    399. Amos CI
    400. Schildkraut JM
    401. Ramus SJ
    402. Ottini L
    403. Goodman MT
    404. Park SK
    405. Kelemen LE
    406. Risch HA
    407. Thomassen M
    408. Offit K
    409. Simard J
    410. Schmutzler RK
    411. Hazelett D
    412. Monteiro AN
    413. Couch FJ
    414. Berchuck A
    415. Chenevix-Trench G
    416. Goode EL
    417. Sellers TA
    418. Gayther SA
    419. Antoniou AC
    420. Pharoah PDP
    (2017) Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer
    Nature Genetics 49:680–691.
    https://doi.org/10.1038/ng.3826
  1. Software
    1. R Development Core Team
    (2020) R: A Language and Environment for Statistical Computing
    R Foundation for Statistical Computing, Vienna, Austria.
    1. Roselli C
    2. Chaffin MD
    3. Weng L-C
    4. Aeschbacher S
    5. Ahlberg G
    6. Albert CM
    7. Almgren P
    8. Alonso A
    9. Anderson CD
    10. Aragam KG
    11. Arking DE
    12. Barnard J
    13. Bartz TM
    14. Benjamin EJ
    15. Bihlmeyer NA
    16. Bis JC
    17. Bloom HL
    18. Boerwinkle E
    19. Bottinger EB
    20. Brody JA
    21. Calkins H
    22. Campbell A
    23. Cappola TP
    24. Carlquist J
    25. Chasman DI
    26. Chen LY
    27. Chen Y-DI
    28. Choi E-K
    29. Choi SH
    30. Christophersen IE
    31. Chung MK
    32. Cole JW
    33. Conen D
    34. Cook J
    35. Crijns HJ
    36. Cutler MJ
    37. Damrauer SM
    38. Daniels BR
    39. Darbar D
    40. Delgado G
    41. Denny JC
    42. Dichgans M
    43. Dörr M
    44. Dudink EA
    45. Dudley SC
    46. Esa N
    47. Esko T
    48. Eskola M
    49. Fatkin D
    50. Felix SB
    51. Ford I
    52. Franco OH
    53. Geelhoed B
    54. Grewal RP
    55. Gudnason V
    56. Guo X
    57. Gupta N
    58. Gustafsson S
    59. Gutmann R
    60. Hamsten A
    61. Harris TB
    62. Hayward C
    63. Heckbert SR
    64. Hernesniemi J
    65. Hocking LJ
    66. Hofman A
    67. Horimoto ARVR
    68. Huang J
    69. Huang PL
    70. Huffman J
    71. Ingelsson E
    72. Ipek EG
    73. Ito K
    74. Jimenez-Conde J
    75. Johnson R
    76. Jukema JW
    77. Kääb S
    78. Kähönen M
    79. Kamatani Y
    80. Kane JP
    81. Kastrati A
    82. Kathiresan S
    83. Katschnig-Winter P
    84. Kavousi M
    85. Kessler T
    86. Kietselaer BL
    87. Kirchhof P
    88. Kleber ME
    89. Knight S
    90. Krieger JE
    91. Kubo M
    92. Launer LJ
    93. Laurikka J
    94. Lehtimäki T
    95. Leineweber K
    96. Lemaitre RN
    97. Li M
    98. Lim HE
    99. Lin HJ
    100. Lin H
    101. Lind L
    102. Lindgren CM
    103. Lokki M-L
    104. London B
    105. Loos RJF
    106. Low S-K
    107. Lu Y
    108. Lyytikäinen L-P
    109. Macfarlane PW
    110. Magnusson PK
    111. Mahajan A
    112. Malik R
    113. Mansur AJ
    114. Marcus GM
    115. Margolin L
    116. Margulies KB
    117. März W
    118. McManus DD
    119. Melander O
    120. Mohanty S
    121. Montgomery JA
    122. Morley MP
    123. Morris AP
    124. Müller-Nurasyid M
    125. Natale A
    126. Nazarian S
    127. Neumann B
    128. Newton-Cheh C
    129. Niemeijer MN
    130. Nikus K
    131. Nilsson P
    132. Noordam R
    133. Oellers H
    134. Olesen MS
    135. Orho-Melander M
    136. Padmanabhan S
    137. Pak H-N
    138. Paré G
    139. Pedersen NL
    140. Pera J
    141. Pereira A
    142. Porteous D
    143. Psaty BM
    144. Pulit SL
    145. Pullinger CR
    146. Rader DJ
    147. Refsgaard L
    148. Ribasés M
    149. Ridker PM
    150. Rienstra M
    151. Risch L
    152. Roden DM
    153. Rosand J
    154. Rosenberg MA
    155. Rost N
    156. Rotter JI
    157. Saba S
    158. Sandhu RK
    159. Schnabel RB
    160. Schramm K
    161. Schunkert H
    162. Schurman C
    163. Scott SA
    164. Seppälä I
    165. Shaffer C
    166. Shah S
    167. Shalaby AA
    168. Shim J
    169. Shoemaker MB
    170. Siland JE
    171. Sinisalo J
    172. Sinner MF
    173. Slowik A
    174. Smith AV
    175. Smith BH
    176. Smith JG
    177. Smith JD
    178. Smith NL
    179. Soliman EZ
    180. Sotoodehnia N
    181. Stricker BH
    182. Sun A
    183. Sun H
    184. Svendsen JH
    185. Tanaka T
    186. Tanriverdi K
    187. Taylor KD
    188. Teder-Laving M
    189. Teumer A
    190. Thériault S
    191. Trompet S
    192. Tucker NR
    193. Tveit A
    194. Uitterlinden AG
    195. Van Der Harst P
    196. Van Gelder IC
    197. Van Wagoner DR
    198. Verweij N
    199. Vlachopoulou E
    200. Völker U
    201. Wang B
    202. Weeke PE
    203. Weijs B
    204. Weiss R
    205. Weiss S
    206. Wells QS
    207. Wiggins KL
    208. Wong JA
    209. Woo D
    210. Worrall BB
    211. Yang P-S
    212. Yao J
    213. Yoneda ZT
    214. Zeller T
    215. Zeng L
    216. Lubitz SA
    217. Lunetta KL
    218. Ellinor PT
    (2018) Multi-ethnic genome-wide association study for atrial fibrillation
    Nature Genetics 50:1225–1233.
    https://doi.org/10.1038/s41588-018-0133-9
    1. Schumacher FR
    2. Al Olama AA
    3. Berndt SI
    4. Benlloch S
    5. Ahmed M
    6. Saunders EJ
    7. Dadaev T
    8. Leongamornlert D
    9. Anokian E
    10. Cieza-Borrella C
    11. Goh C
    12. Brook MN
    13. Sheng X
    14. Fachal L
    15. Dennis J
    16. Tyrer J
    17. Muir K
    18. Lophatananon A
    19. Stevens VL
    20. Gapstur SM
    21. Carter BD
    22. Tangen CM
    23. Goodman PJ
    24. Thompson IM
    25. Batra J
    26. Chambers S
    27. Moya L
    28. Clements J
    29. Horvath L
    30. Tilley W
    31. Risbridger GP
    32. Gronberg H
    33. Aly M
    34. Nordström T
    35. Pharoah P
    36. Pashayan N
    37. Schleutker J
    38. Tammela TLJ
    39. Sipeky C
    40. Auvinen A
    41. Albanes D
    42. Weinstein S
    43. Wolk A
    44. Håkansson N
    45. West CML
    46. Dunning AM
    47. Burnet N
    48. Mucci LA
    49. Giovannucci E
    50. Andriole GL
    51. Cussenot O
    52. Cancel-Tassin G
    53. Koutros S
    54. Beane Freeman LE
    55. Sorensen KD
    56. Orntoft TF
    57. Borre M
    58. Maehle L
    59. Grindedal EM
    60. Neal DE
    61. Donovan JL
    62. Hamdy FC
    63. Martin RM
    64. Travis RC
    65. Key TJ
    66. Hamilton RJ
    67. Fleshner NE
    68. Finelli A
    69. Ingles SA
    70. Stern MC
    71. Rosenstein BS
    72. Kerns SL
    73. Ostrer H
    74. Lu Y-J
    75. Zhang H-W
    76. Feng N
    77. Mao X
    78. Guo X
    79. Wang G
    80. Sun Z
    81. Giles GG
    82. Southey MC
    83. MacInnis RJ
    84. FitzGerald LM
    85. Kibel AS
    86. Drake BF
    87. Vega A
    88. Gómez-Caamaño A
    89. Szulkin R
    90. Eklund M
    91. Kogevinas M
    92. Llorca J
    93. Castaño-Vinyals G
    94. Penney KL
    95. Stampfer M
    96. Park JY
    97. Sellers TA
    98. Lin H-Y
    99. Stanford JL
    100. Cybulski C
    101. Wokolorczyk D
    102. Lubinski J
    103. Ostrander EA
    104. Geybels MS
    105. Nordestgaard BG
    106. Nielsen SF
    107. Weischer M
    108. Bisbjerg R
    109. Røder MA
    110. Iversen P
    111. Brenner H
    112. Cuk K
    113. Holleczek B
    114. Maier C
    115. Luedeke M
    116. Schnoeller T
    117. Kim J
    118. Logothetis CJ
    119. John EM
    120. Teixeira MR
    121. Paulo P
    122. Cardoso M
    123. Neuhausen SL
    124. Steele L
    125. Ding YC
    126. De Ruyck K
    127. De Meerleer G
    128. Ost P
    129. Razack A
    130. Lim J
    131. Teo S-H
    132. Lin DW
    133. Newcomb LF
    134. Lessel D
    135. Gamulin M
    136. Kulis T
    137. Kaneva R
    138. Usmani N
    139. Singhal S
    140. Slavov C
    141. Mitev V
    142. Parliament M
    143. Claessens F
    144. Joniau S
    145. Van den Broeck T
    146. Larkin S
    147. Townsend PA
    148. Aukim-Hastie C
    149. Gago-Dominguez M
    150. Castelao JE
    151. Martinez ME
    152. Roobol MJ
    153. Jenster G
    154. van Schaik RHN
    155. Menegaux F
    156. Truong T
    157. Koudou YA
    158. Xu J
    159. Khaw K-T
    160. Cannon-Albright L
    161. Pandha H
    162. Michael A
    163. Thibodeau SN
    164. McDonnell SK
    165. Schaid DJ
    166. Lindstrom S
    167. Turman C
    168. Ma J
    169. Hunter DJ
    170. Riboli E
    171. Siddiq A
    172. Canzian F
    173. Kolonel LN
    174. Le Marchand L
    175. Hoover RN
    176. Machiela MJ
    177. Cui Z
    178. Kraft P
    179. Amos CI
    180. Conti DV
    181. Easton DF
    182. Wiklund F
    183. Chanock SJ
    184. Henderson BE
    185. Kote-Jarai Z
    186. Haiman CA
    187. Eeles RA
    188. Profile Study
    189. Australian Prostate Cancer BioResource (APCB)
    190. IMPACT Study
    191. Canary PASS Investigators
    192. Breast and Prostate Cancer Cohort Consortium (BPC3)
    193. PRACTICAL (Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome) Consortium
    194. Cancer of the Prostate in Sweden (CAPS)
    195. Prostate Cancer Genome-wide Association Study of Uncommon Susceptibility Loci (PEGASUS)
    196. Genetic Associations and Mechanisms in Oncology (GAME-ON)/Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE) Consortium
    (2018) Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci
    Nature Genetics 50:928–936.
    https://doi.org/10.1038/s41588-018-0142-8
  2. Preprint
    1. Shah S
    2. Henry A
    3. Roselli C
    4. Lin H
    5. Sveinbjörnsson G
    6. Fatemifar G
    7. Hedman AK
    8. Wilk JB
    9. Morley MP
    10. Chaffin MD
    11. Helgadottir A
    12. Verwei N
    13. Dehghan A
    14. Almgren P
    15. Andersson C
    16. Aragam KG
    17. Ärnlöv J
    18. Backman JD
    19. Biggs ML
    20. Bloom HL
    21. Brandimarto J
    22. Brown MR
    23. Leonard B
    24. Buckbinder L
    25. Carey DJ
    26. Chasman DI
    27. Chen X
    28. Chen X
    29. Chung J
    30. Chutkow W
    31. Cook JP
    32. Delgado GE
    33. Denaxas S
    34. Doney AS
    35. Dörr M
    36. Dudley SC
    37. Dunn ME
    38. Engström G
    39. Esko T
    40. Felix SB
    41. Finan S
    42. Ford I
    43. Ghanbari M
    44. Ghasemi S
    45. Giedraitis V
    46. Giulianini F
    47. Gottdiener JS
    48. Gross S
    49. Guðbjartsson DF
    50. Gutmann R
    51. Haggerty CM
    52. Harst P
    53. Hyde CL
    54. Ingelsson E
    55. Wouter Jukema J
    56. Kavousi M
    57. Khaw KT
    58. Kleber ME
    59. Køber L
    60. Koekemoer A
    61. Langenberg C
    62. Lind L
    63. Lindgren CM
    64. London B
    65. Lotta LA
    66. Lovering RA
    67. Luan J
    68. Magnusson P
    69. Mahajan A
    70. Margulies KB
    71. März W
    72. Melander O
    73. Mordi IR
    74. Morgan T
    75. Morris AD
    76. Morris AP
    77. Morrison AC
    78. Nagle MW
    79. Nelson CP
    80. Niessner A
    81. Niiranen T
    82. O’Donoghue ML
    83. Owens AT
    84. Palmer CNA
    85. Parry HM
    86. Perola M
    87. Portilla-Fernandez E
    88. Psaty BM
    89. Rice KM
    90. Ridker PM
    91. Romaine SPR
    92. Rotter JI
    93. Salo P
    94. Salomaa V
    95. Setten J
    96. Shalaby AA
    97. Smelser DT
    98. Smith NL
    99. Stender S
    100. Stott DJ
    101. Svensson P
    102. Tammesoo ML
    103. Taylor KD
    104. Teder-Laving M
    105. Teumer A
    106. Thorgeirsson G
    107. Thorsteinsdottir U
    108. Torp-Pedersen C
    109. Trompet S
    110. Tyl B
    111. Uitterlinden AG
    112. Veluchamy A
    113. Völker U
    114. Voors AA
    115. Wang X
    116. Wareham NJ
    117. Waterworth D
    118. Weeke PE
    119. Weiss R
    120. Wiggins KL
    121. Xing H
    122. Yerges-Armstrong LM
    123. Yu B
    124. Zannad F
    125. Hua Zhao J
    126. Hemingway H
    127. Samani NJ
    128. McMurray JJV
    129. Yang J
    130. Visscher PM
    131. Newton-Cheh C
    132. Malarstig A
    133. Holm H
    134. Lubitz SA
    135. Sattar N
    136. Holmes MV
    137. Cappola TP
    138. Asselbergs F
    139. Hingorani AD
    140. Kuchenbaecker K
    141. Ellinor PT
    142. Lang CC
    143. Stefansson K
    144. Gustav Smith J
    145. Vasan RS
    146. Swerdlow DI
    147. Thomas Lumbers R
    148. EchoGen Consortium
    149. Broad AF Investigators
    150. Regeneron Genetics Center
    (2019) Genome-Wide Association Study Provides New Insights into the Genetic Architecture and Pathogenesis of Heart Failure
    bioRxiv.
    https://doi.org/10.1101/682013
    1. Tin A
    2. Marten J
    3. Halperin Kuhns VL
    4. Li Y
    5. Wuttke M
    6. Kirsten H
    7. Sieber KB
    8. Qiu C
    9. Gorski M
    10. Yu Z
    11. Giri A
    12. Sveinbjornsson G
    13. Li M
    14. Chu AY
    15. Hoppmann A
    16. O’Connor LJ
    17. Prins B
    18. Nutile T
    19. Noce D
    20. Akiyama M
    21. Cocca M
    22. Ghasemi S
    23. van der Most PJ
    24. Horn K
    25. Xu Y
    26. Fuchsberger C
    27. Sedaghat S
    28. Afaq S
    29. Amin N
    30. Ärnlöv J
    31. Bakker SJL
    32. Bansal N
    33. Baptista D
    34. Bergmann S
    35. Biggs ML
    36. Biino G
    37. Boerwinkle E
    38. Bottinger EP
    39. Boutin TS
    40. Brumat M
    41. Burkhardt R
    42. Campana E
    43. Campbell A
    44. Campbell H
    45. Carroll RJ
    46. Catamo E
    47. Chambers JC
    48. Ciullo M
    49. Concas MP
    50. Coresh J
    51. Corre T
    52. Cusi D
    53. Felicita SC
    54. de Borst MH
    55. De Grandi A
    56. de Mutsert R
    57. de Vries APJ
    58. Delgado G
    59. Demirkan A
    60. Devuyst O
    61. Dittrich K
    62. Eckardt K-U
    63. Ehret G
    64. Endlich K
    65. Evans MK
    66. Gansevoort RT
    67. Gasparini P
    68. Giedraitis V
    69. Gieger C
    70. Girotto G
    71. Gögele M
    72. Gordon SD
    73. Gudbjartsson DF
    74. Gudnason V
    75. German Chronic Kidney Disease Study
    76. Haller T
    77. Hamet P
    78. Harris TB
    79. Hayward C
    80. Hicks AA
    81. Hofer E
    82. Holm H
    83. Huang W
    84. Hutri-Kähönen N
    85. Hwang S-J
    86. Ikram MA
    87. Lewis RM
    88. Ingelsson E
    89. Jakobsdottir J
    90. Jonsdottir I
    91. Jonsson H
    92. Joshi PK
    93. Josyula NS
    94. Jung B
    95. Kähönen M
    96. Kamatani Y
    97. Kanai M
    98. Kerr SM
    99. Kiess W
    100. Kleber ME
    101. Koenig W
    102. Kooner JS
    103. Körner A
    104. Kovacs P
    105. Krämer BK
    106. Kronenberg F
    107. Kubo M
    108. Kühnel B
    109. La Bianca M
    110. Lange LA
    111. Lehne B
    112. Lehtimäki T
    113. Lifelines Cohort Study
    114. Liu J
    115. Loeffler M
    116. Loos RJF
    117. Lyytikäinen L-P
    118. Magi R
    119. Mahajan A
    120. Martin NG
    121. März W
    122. Mascalzoni D
    123. Matsuda K
    124. Meisinger C
    125. Meitinger T
    126. Metspalu A
    127. Milaneschi Y
    128. V. A. Million Veteran Program
    129. O’Donnell CJ
    130. Wilson OD
    131. Gaziano JM
    132. Mishra PP
    133. Mohlke KL
    134. Mononen N
    135. Montgomery GW
    136. Mook-Kanamori DO
    137. Müller-Nurasyid M
    138. Nadkarni GN
    139. Nalls MA
    140. Nauck M
    141. Nikus K
    142. Ning B
    143. Nolte IM
    144. Noordam R
    145. O’Connell JR
    146. Olafsson I
    147. Padmanabhan S
    148. Penninx BWJH
    149. Perls T
    150. Peters A
    151. Pirastu M
    152. Pirastu N
    153. Pistis G
    154. Polasek O
    155. Ponte B
    156. Porteous DJ
    157. Poulain T
    158. Preuss MH
    159. Rabelink TJ
    160. Raffield LM
    161. Raitakari OT
    162. Rettig R
    163. Rheinberger M
    164. Rice KM
    165. Rizzi F
    166. Robino A
    167. Rudan I
    168. Krajcoviechova A
    169. Cifkova R
    170. Rueedi R
    171. Ruggiero D
    172. Ryan KA
    173. Saba Y
    174. Salvi E
    175. Schmidt H
    176. Schmidt R
    177. Shaffer CM
    178. Smith AV
    179. Smith BH
    180. Spracklen CN
    181. Strauch K
    182. Stumvoll M
    183. Sulem P
    184. Tajuddin SM
    185. Teren A
    186. Thiery J
    187. Thio CHL
    188. Thorsteinsdottir U
    189. Toniolo D
    190. Tönjes A
    191. Tremblay J
    192. Uitterlinden AG
    193. Vaccargiu S
    194. van der Harst P
    195. van Duijn CM
    196. Verweij N
    197. Völker U
    198. Vollenweider P
    199. Waeber G
    200. Waldenberger M
    201. Whitfield JB
    202. Wild SH
    203. Wilson JF
    204. Yang Q
    205. Zhang W
    206. Zonderman AB
    207. Bochud M
    208. Wilson JG
    209. Pendergrass SA
    210. Ho K
    211. Parsa A
    212. Pramstaller PP
    213. Psaty BM
    214. Böger CA
    215. Snieder H
    216. Butterworth AS
    217. Okada Y
    218. Edwards TL
    219. Stefansson K
    220. Susztak K
    221. Scholz M
    222. Heid IM
    223. Hung AM
    224. Teumer A
    225. Pattaro C
    226. Woodward OM
    227. Vitart V
    228. Köttgen A
    (2019) Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels
    Nature Genetics 51:1459–1474.
    https://doi.org/10.1038/s41588-019-0504-x
    1. Wray NR
    2. Ripke S
    3. Mattheisen M
    4. Trzaskowski M
    5. Byrne EM
    6. Abdellaoui A
    7. Adams MJ
    8. Agerbo E
    9. Air TM
    10. Andlauer TMF
    11. Bacanu S-A
    12. Bækvad-Hansen M
    13. Beekman AFT
    14. Bigdeli TB
    15. Binder EB
    16. Blackwood DRH
    17. Bryois J
    18. Buttenschøn HN
    19. Bybjerg-Grauholm J
    20. Cai N
    21. Castelao E
    22. Christensen JH
    23. Clarke T-K
    24. Coleman JIR
    25. Colodro-Conde L
    26. Couvy-Duchesne B
    27. Craddock N
    28. Crawford GE
    29. Crowley CA
    30. Dashti HS
    31. Davies G
    32. Deary IJ
    33. Degenhardt F
    34. Derks EM
    35. Direk N
    36. Dolan CV
    37. Dunn EC
    38. Eley TC
    39. Eriksson N
    40. Escott-Price V
    41. Kiadeh FHF
    42. Finucane HK
    43. Forstner AJ
    44. Frank J
    45. Gaspar HA
    46. Gill M
    47. Giusti-Rodríguez P
    48. Goes FS
    49. Gordon SD
    50. Grove J
    51. Hall LS
    52. Hannon E
    53. Hansen CS
    54. Hansen TF
    55. Herms S
    56. Hickie IB
    57. Hoffmann P
    58. Homuth G
    59. Horn C
    60. Hottenga J-J
    61. Hougaard DM
    62. Hu M
    63. Hyde CL
    64. Ising M
    65. Jansen R
    66. Jin F
    67. Jorgenson E
    68. Knowles JA
    69. Kohane IS
    70. Kraft J
    71. Kretzschmar WW
    72. Krogh J
    73. Kutalik Z
    74. Lane JM
    75. Li Y
    76. Li Y
    77. Lind PA
    78. Liu X
    79. Lu L
    80. MacIntyre DJ
    81. MacKinnon DF
    82. Maier RM
    83. Maier W
    84. Marchini J
    85. Mbarek H
    86. McGrath P
    87. McGuffin P
    88. Medland SE
    89. Mehta D
    90. Middeldorp CM
    91. Mihailov E
    92. Milaneschi Y
    93. Milani L
    94. Mill J
    95. Mondimore FM
    96. Montgomery GW
    97. Mostafavi S
    98. Mullins N
    99. Nauck M
    100. Ng B
    101. Nivard MG
    102. Nyholt DR
    103. O’Reilly PF
    104. Oskarsson H
    105. Owen MJ
    106. Painter JN
    107. Pedersen CB
    108. Pedersen MG
    109. Peterson RE
    110. Pettersson E
    111. Peyrot WJ
    112. Pistis G
    113. Posthuma D
    114. Purcell SM
    115. Quiroz JA
    116. Qvist P
    117. Rice JP
    118. Riley BP
    119. Rivera M
    120. Saeed Mirza S
    121. Saxena R
    122. Schoevers R
    123. Schulte EC
    124. Shen L
    125. Shi J
    126. Shyn SI
    127. Sigurdsson E
    128. Sinnamon GBC
    129. Smit JH
    130. Smith DJ
    131. Stefansson H
    132. Steinberg S
    133. Stockmeier CA
    134. Streit F
    135. Strohmaier J
    136. Tansey KE
    137. Teismann H
    138. Teumer A
    139. Thompson W
    140. Thomson PA
    141. Thorgeirsson TE
    142. Tian C
    143. Traylor M
    144. Treutlein J
    145. Trubetskoy V
    146. Uitterlinden AG
    147. Umbricht D
    148. Van der Auwera S
    149. van Hemert AM
    150. Viktorin A
    151. Visscher PM
    152. Wang Y
    153. Webb BT
    154. Weinsheimer SM
    155. Wellmann J
    156. Willemsen G
    157. Witt SH
    158. Wu Y
    159. Xi HS
    160. Yang J
    161. Zhang F
    162. eQTLGen
    163. 23andMe
    164. Arolt V
    165. Baune BT
    166. Berger K
    167. Boomsma DI
    168. Cichon S
    169. Dannlowski U
    170. de Geus ECJ
    171. DePaulo JR
    172. Domenici E
    173. Domschke K
    174. Esko T
    175. Grabe HJ
    176. Hamilton SP
    177. Hayward C
    178. Heath AC
    179. Hinds DA
    180. Kendler KS
    181. Kloiber S
    182. Lewis G
    183. Li QS
    184. Lucae S
    185. Madden PFA
    186. Magnusson PK
    187. Martin NG
    188. McIntosh AM
    189. Metspalu A
    190. Mors O
    191. Mortensen PB
    192. Müller-Myhsok B
    193. Nordentoft M
    194. Nöthen MM
    195. O’Donovan MC
    196. Paciga SA
    197. Pedersen NL
    198. Penninx BWJH
    199. Perlis RH
    200. Porteous DJ
    201. Potash JB
    202. Preisig M
    203. Rietschel M
    204. Schaefer C
    205. Schulze TG
    206. Smoller JW
    207. Stefansson K
    208. Tiemeier H
    209. Uher R
    210. Völzke H
    211. Weissman MM
    212. Werge T
    213. Winslow AR
    214. Lewis CM
    215. Levinson DF
    216. Breen G
    217. Børglum AD
    218. Sullivan PF
    219. Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium
    (2018) Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression
    Nature Genetics 50:668–681.
    https://doi.org/10.1038/s41588-018-0090-3
    1. Wuttke M
    2. Li Y
    3. Li M
    4. Sieber KB
    5. Feitosa MF
    6. Gorski M
    7. Tin A
    8. Wang L
    9. Chu AY
    10. Hoppmann A
    11. Kirsten H
    12. Giri A
    13. Chai J-F
    14. Sveinbjornsson G
    15. Tayo BO
    16. Nutile T
    17. Fuchsberger C
    18. Marten J
    19. Cocca M
    20. Ghasemi S
    21. Xu Y
    22. Horn K
    23. Noce D
    24. van der Most PJ
    25. Sedaghat S
    26. Yu Z
    27. Akiyama M
    28. Afaq S
    29. Ahluwalia TS
    30. Almgren P
    31. Amin N
    32. Ärnlöv J
    33. Bakker SJL
    34. Bansal N
    35. Baptista D
    36. Bergmann S
    37. Biggs ML
    38. Biino G
    39. Boehnke M
    40. Boerwinkle E
    41. Boissel M
    42. Bottinger EP
    43. Boutin TS
    44. Brenner H
    45. Brumat M
    46. Burkhardt R
    47. Butterworth AS
    48. Campana E
    49. Campbell A
    50. Campbell H
    51. Canouil M
    52. Carroll RJ
    53. Catamo E
    54. Chambers JC
    55. Chee M-L
    56. Chee M-L
    57. Chen X
    58. Cheng C-Y
    59. Cheng Y
    60. Christensen K
    61. Cifkova R
    62. Ciullo M
    63. Concas MP
    64. Cook JP
    65. Coresh J
    66. Corre T
    67. Sala CF
    68. Cusi D
    69. Danesh J
    70. Daw EW
    71. de Borst MH
    72. De Grandi A
    73. de Mutsert R
    74. de Vries APJ
    75. Degenhardt F
    76. Delgado G
    77. Demirkan A
    78. Di Angelantonio E
    79. Dittrich K
    80. Divers J
    81. Dorajoo R
    82. Eckardt K-U
    83. Ehret G
    84. Elliott P
    85. Endlich K
    86. Evans MK
    87. Felix JF
    88. Foo VHX
    89. Franco OH
    90. Franke A
    91. Freedman BI
    92. Freitag-Wolf S
    93. Friedlander Y
    94. Froguel P
    95. Gansevoort RT
    96. Gao H
    97. Gasparini P
    98. Gaziano JM
    99. Giedraitis V
    100. Gieger C
    101. Girotto G
    102. Giulianini F
    103. Gögele M
    104. Gordon SD
    105. Gudbjartsson DF
    106. Gudnason V
    107. Haller T
    108. Hamet P
    109. Harris TB
    110. Hartman CA
    111. Hayward C
    112. Hellwege JN
    113. Heng C-K
    114. Hicks AA
    115. Hofer E
    116. Huang W
    117. Hutri-Kähönen N
    118. Hwang S-J
    119. Ikram MA
    120. Indridason OS
    121. Ingelsson E
    122. Ising M
    123. Jaddoe VWV
    124. Jakobsdottir J
    125. Jonas JB
    126. Joshi PK
    127. Josyula NS
    128. Jung B
    129. Kähönen M
    130. Kamatani Y
    131. Kammerer CM
    132. Kanai M
    133. Kastarinen M
    134. Kerr SM
    135. Khor C-C
    136. Kiess W
    137. Kleber ME
    138. Koenig W
    139. Kooner JS
    140. Körner A
    141. Kovacs P
    142. Kraja AT
    143. Krajcoviechova A
    144. Kramer H
    145. Krämer BK
    146. Kronenberg F
    147. Kubo M
    148. Kühnel B
    149. Kuokkanen M
    150. Kuusisto J
    151. La Bianca M
    152. Laakso M
    153. Lange LA
    154. Langefeld CD
    155. Lee JJ-M
    156. Lehne B
    157. Lehtimäki T
    158. Lieb W
    159. Lifelines Cohort Study
    160. Lim S-C
    161. Lind L
    162. Lindgren CM
    163. Liu J
    164. Liu J
    165. Loeffler M
    166. Loos RJF
    167. Lucae S
    168. Lukas MA
    169. Lyytikäinen L-P
    170. Mägi R
    171. Magnusson PKE
    172. Mahajan A
    173. Martin NG
    174. Martins J
    175. März W
    176. Mascalzoni D
    177. Matsuda K
    178. Meisinger C
    179. Meitinger T
    180. Melander O
    181. Metspalu A
    182. Mikaelsdottir EK
    183. Milaneschi Y
    184. Miliku K
    185. Mishra PP
    186. V. A. Million Veteran Program
    187. Mohlke KL
    188. Mononen N
    189. Montgomery GW
    190. Mook-Kanamori DO
    191. Mychaleckyj JC
    192. Nadkarni GN
    193. Nalls MA
    194. Nauck M
    195. Nikus K
    196. Ning B
    197. Nolte IM
    198. Noordam R
    199. O’ J
    200. Olafsson I
    201. Oldehinkel AJ
    202. Orho-Melander M
    203. Ouwehand WH
    204. Padmanabhan S
    205. Palmer ND
    206. Palsson R
    207. Penninx BWJH
    208. Perls T
    209. Perola M
    210. Pirastu M
    211. Pirastu N
    212. Pistis G
    213. Podgornaia AI
    214. Polasek O
    215. Ponte B
    216. Porteous DJ
    217. Poulain T
    218. Pramstaller PP
    219. Preuss MH
    220. Prins BP
    221. Province MA
    222. Rabelink TJ
    223. Raffield LM
    224. Raitakari OT
    225. Reilly DF
    226. Rettig R
    227. Rheinberger M
    228. Rice KM
    229. Ridker PM
    230. Rivadeneira F
    231. Rizzi F
    232. Roberts DJ
    233. Robino A
    234. Rossing P
    235. Rudan I
    236. Rueedi R
    237. Ruggiero D
    238. Ryan KA
    239. Saba Y
    240. Sabanayagam C
    241. Salomaa V
    242. Salvi E
    243. Saum K-U
    244. Schmidt H
    245. Schmidt R
    246. Schöttker B
    247. Schulz C-A
    248. Schupf N
    249. Shaffer CM
    250. Shi Y
    251. Smith AV
    252. Smith BH
    253. Soranzo N
    254. Spracklen CN
    255. Strauch K
    256. Stringham HM
    257. Stumvoll M
    258. Svensson PO
    259. Szymczak S
    260. Tai E-S
    261. Tajuddin SM
    262. Tan NYQ
    263. Taylor KD
    264. Teren A
    265. Tham Y-C
    266. Thiery J
    267. Thio CHL
    268. Thomsen H
    269. Thorleifsson G
    270. Toniolo D
    271. Tönjes A
    272. Tremblay J
    273. Tzoulaki I
    274. Uitterlinden AG
    275. Vaccargiu S
    276. van Dam RM
    277. van der Harst P
    278. van Duijn CM
    279. Velez Edward DR
    280. Verweij N
    281. Vogelezang S
    282. Völker U
    283. Vollenweider P
    284. Waeber G
    285. Waldenberger M
    286. Wallentin L
    287. Wang YX
    288. Wang C
    289. Waterworth DM
    290. Bin Wei W
    291. White H
    292. Whitfield JB
    293. Wild SH
    294. Wilson JF
    295. Wojczynski MK
    296. Wong C
    297. Wong T-Y
    298. Xu L
    299. Yang Q
    300. Yasuda M
    301. Yerges-Armstrong LM
    302. Zhang W
    303. Zonderman AB
    304. Rotter JI
    305. Bochud M
    306. Psaty BM
    307. Vitart V
    308. Wilson JG
    309. Dehghan A
    310. Parsa A
    311. Chasman DI
    312. Ho K
    313. Morris AP
    314. Devuyst O
    315. Akilesh S
    316. Pendergrass SA
    317. Sim X
    318. Böger CA
    319. Okada Y
    320. Edwards TL
    321. Snieder H
    322. Stefansson K
    323. Hung AM
    324. Heid IM
    325. Scholz M
    326. Teumer A
    327. Köttgen A
    328. Pattaro C
    (2019) A catalog of genetic loci associated with kidney function from analyses of a million individuals
    Nature Genetics 51:957–972.
    https://doi.org/10.1038/s41588-019-0407-x

Article and author information

Author details

  1. Susan Martin

    Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research, Innovation, Learning and Development building, Royal Devon & Exeter Hospital, Exeter, United Kingdom
    Contribution
    Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review and editing
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8746-0947
  2. Jessica Tyrrell

    Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research, Innovation, Learning and Development building, Royal Devon & Exeter Hospital, Exeter, United Kingdom
    Contribution
    Conceptualization, Methodology, Project administration, Resources, Software, Supervision, Writing – review and editing
    Competing interests
    No competing interests declared
  3. E Louise Thomas

    Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4235-4694
  4. Matthew J Bown

    1. Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
    2. NIHR Leicester Biomedical Research Centre, Leicester, United Kingdom
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  5. Andrew R Wood

    Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research, Innovation, Learning and Development building, Royal Devon & Exeter Hospital, Exeter, United Kingdom
    Contribution
    Resources, Software, Writing – review and editing
    Competing interests
    No competing interests declared
  6. Robin N Beaumont

    Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research, Innovation, Learning and Development building, Royal Devon & Exeter Hospital, Exeter, United Kingdom
    Contribution
    Resources, Software, Writing – review and editing
    Competing interests
    No competing interests declared
  7. Lam C Tsoi

    Department of Dermatology, University of Michigan, Ann Arbor, United States
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  8. Philip E Stuart

    Department of Dermatology, University of Michigan, Ann Arbor, United States
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  9. James T Elder

    1. Department of Dermatology, University of Michigan, Ann Arbor, United States
    2. Ann Arbor Veterans Affairs Hospital, Ann Arbor, United States
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  10. Philip Law

    The Institute of Cancer Research, London, United Kingdom
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  11. Richard Houlston

    The Institute of Cancer Research, London, United Kingdom
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  12. Christopher Kabrhel

    1. Department of Emergency Medicine, Massachusetts General Hospital, Boston, United States
    2. Department of Emergency Medicine, Harvard Medical School, Boston, United States
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  13. Nikos Papadimitriou

    Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  14. Marc J Gunter

    Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  15. Caroline J Bull

    1. MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
    2. Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
    3. School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  16. Joshua A Bell

    1. MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
    2. Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  17. Emma E Vincent

    1. MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
    2. Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
    3. School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  18. Naveed Sattar

    Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
    Contribution
    Resources, Writing – review and editing
    Competing interests
    Naveed Sattar has consulted for Afimmune, Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Hanmi Pharmaceuticals, Merck Sharp & Dohme, Novartis, Novo Nordisk, Pfizer, and Sanofi; and received grant support paid to his University from AstraZeneca, Boehringer Ingelheim and Roche Diagnostics outside the submitted work
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1604-2593
  19. Malcolm G Dunlop

    1. University of Edinburgh, Edinburgh, United Kingdom
    2. Western General Hospital, Edinburgh, United Kingdom
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  20. Ian PM Tomlinson

    Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, United Kingdom
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  21. Sara Lindström

    1. Department of Epidemiology, University of Washington, Seattle, United States
    2. Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  22. INVENT consortium

    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
  23. Jimmy D Bell

    Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
    Contribution
    Resources, Writing – review and editing
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3804-1281
  24. Timothy M Frayling

    Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research, Innovation, Learning and Development building, Royal Devon & Exeter Hospital, Exeter, United Kingdom
    Contribution
    Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Validation, Writing – original draft, Writing – review and editing
    For correspondence
    t.m.frayling@exeter.ac.uk
    Competing interests
    Tim Frayling has consulted for Boehringer Ingelheim and Sanofi and has a student supported by GSK
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8362-2603
  25. Hanieh Yaghootkar

    1. Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research, Innovation, Learning and Development building, Royal Devon & Exeter Hospital, Exeter, United Kingdom
    2. Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
    3. Centre for Inflammation Research and Translational Medicine (CIRTM), Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
    Contribution
    Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Validation, Writing – original draft, Writing – review and editing
    For correspondence
    Hanieh.Yaghootkar@brunel.ac.uk
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9672-9477

Funding

Diabetes UK (17/0005594)

  • Hanieh Yaghootkar

Medical Research Council (MR/T002239/1)

  • Susan Martin
  • Timothy Frayling

World Cancer Research Fund (IIG_2019_2009)

  • Caroline Bull
  • Emma E Vincent

Medical Research Council (MC_UU_00011/1)

  • Joshua A Bell

Diabetes UK (17/0005587)

  • Emma E Vincent

Cancer Research UK (C18281/A29019)

  • Emma E Vincent

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Acknowledgements

This research has been conducted using the UK Biobank Resource under Application Number ‘9072’ and ‘9055’. We acknowledge the use of the University of Exeter High-Performance Computing (HPC) facility in carrying out this work. We acknowledge use of high-performance computing funded by an MRC Clinical Research Infrastructure award (MRC Grant: MR/M008924/1).

ASTERISK: We are very grateful to Dr. Bruno Buecher without whom this project would not have existed. We also thank all those who agreed to participate in this study, including the patients and the healthy control persons, as well as all the physicians, technicians and students.

CCFR: The Colon CFR graciously thanks the generous contributions of their study participants, dedication of study staff, and the financial support from the U.S. National Cancer Institute, without which this important registry would not exist. We would like to thank the study participants and staff of the Seattle Colon Cancer Family Registry and the Hormones and Colon Cancer study (CORE Studies).

CLUE II: We thank the participants of Clue II and appreciate the continued efforts of the staff at the Johns Hopkins George W. Comstock Center for Public Health Research and Prevention in the conduct of the Clue II Cohort Study.

COLON and NQplus: We would like to thank the COLON and NQplus investigators at Wageningen University & Research and the involved clinicians in the participating hospitals.

CORSA: We kindly thank all those who contributed to the screening project Burgenland against CRC. Furthermore, we are grateful to Doris Mejri and Monika Hunjadi for laboratory assistance.

CPS-II: We thank the CPS-II participants and Study Management Group for their invaluable contributions to this research. We would also like to acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, and cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results program.

Czech Republic CCS: We are thankful to all clinicians in major hospitals in the Czech Republic, without whom the study would not be practicable. We are also sincerely grateful to all patients participating in this study.

DACHS: We thank all participants and cooperating clinicians, and Ute Handte-Daub, Utz Benscheid, Muhabbet Celik, and Ursula Eilber for excellent technical assistance.

EDRN: We acknowledge all the following contributors to the development of the resource: University of Pittsburgh School of Medicine, Department of Gastroenterology, Hepatology and Nutrition: Lynda Dzubinski; University of Pittsburgh School of Medicine, Department of Pathology: Michelle Bisceglia; and University of Pittsburgh School of Medicine, Department of Biomedical Informatics.

EPIC: Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization.

The EPIC-Norfolk study: we are grateful to all the participants who have been part of the project and to the many members of the study teams at the University of Cambridge who have enabled this research.

EPICOLON: We are sincerely grateful to all patients participating in this study who were recruited as part of the EPICOLON project. We acknowledge the Spanish National DNA Bank, Biobank of Hospital Clínic–IDIBAPS and Biobanco Vasco for the availability of the samples. The work was carried out (in part) at the Esther Koplowitz Centre, Barcelona.

Harvard cohorts (HPFS, NHS, PHS): The study protocol was approved by the institutional review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required. We acknowledge Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital as home of the NHS. We would like to thank the participants and staff of the HPFS, NHS and PHS for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data.

Interval: A complete list of the investigators and contributors to the INTERVAL trial is provided in reference (32Riaz et al., 2018). The academic coordinating centre would like to thank blood donor centre staff and blood donors for participating in the INTERVAL trial.

Kentucky: We would like to acknowledge the staff at the Kentucky Cancer Registry.

LCCS: We acknowledge the contributions of Jennifer Barrett, Robin Waxman, Gillian Smith and Emma Northwood in conducting this study.

NCCCS I & II: We would like to thank the study participants, and the NC Colorectal Cancer Study staff.

NSHDS investigators thank the Biobank Research Unit at Umeå University, the Västerbotten Intervention Programme, the Northern Sweden MONICA study and Region Västerbotten for providing data and samples and acknowledge the contribution from Biobank Sweden, supported by the Swedish Research Council (VR 2017-00650).

PLCO: We thank the PLCO Cancer Screening Trial screening center investigators and the staff from Information Management Services Inc and Westat Inc. Most importantly, we thank the study participants for their contributions that made this study possible.

SEARCH: We thank the SEARCH team.

SELECT: We thank the research and clinical staff at the sites that participated on SELECT study, without whom the trial would not have been successful. We are also grateful to the 35,533 dedicated men who participated in SELECT.

UK Biobank: We would like to thank the participants and researchers UK Biobank for their participation and acquisition of data.

WHI: We thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at: http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf.

HY is funded by Diabetes UK RD Lawrence fellowship (grant: 17/0005594). SM and TMF are funded by the MRC (MR/T002239/1). CJB is supported by the World Cancer Research Fund (WCRF UK), as part of the World Cancer Research Fund International grant programme (IIG_2019_2009). JAB works in a unit funded by the UK MRC (MC_UU_00011/1) and the University of Bristol. EEV is supported by Diabetes UK (17/0005587) and the World Cancer Research Fund (WCRF UK), as part of the World Cancer Research Fund International grant programme (IIG_2019_2009) and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A29019).

Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO): National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services (U01 CA164930, U01 CA137088, R01 CA059045, R21 CA191312, R01201407). Genotyping/Sequencing services were provided by the Center for Inherited Disease Research (CIDR) contract number HHSN268201700006I and HHSN268201200008I. This research was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA015704. Scientific Computing Infrastructure at Fred Hutch funded by ORIP grant S10OD028685.

ASTERISK: a Hospital Clinical Research Program (PHRC-BRD09/C) from the University Hospital Center of Nantes (CHU de Nantes) and supported by the Regional Council of Pays de la Loire, the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (GEFLUC), the Association Anne de Bretagne Génétique and the Ligue Régionale Contre le Cancer (LRCC).

The ATBC Study is supported by the Intramural Research Program of the U.S. National Cancer Institute, National Institutes of Health.

CLUE II funding was from the National Cancer Institute (U01 CA86308, Early Detection Research Network; P30 CA006973), National Institute on Aging (U01 AG18033), and the American Institute for Cancer Research. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US government.

Maryland Cancer Registry (MCR)

Cancer data was provided by the Maryland Cancer Registry, Center for Cancer Prevention and Control, Maryland Department of Health, with funding from the State of Maryland and the Maryland Cigarette Restitution Fund. The collection and availability of cancer registry data is also supported by the Cooperative Agreement NU58DP006333, funded by the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention or the Department of Health and Human Services.

ColoCare: This work was supported by the National Institutes of Health (grant numbers R01 CA189184 [Li/Ulrich], U01 CA206110 [Ulrich/Li/Siegel/Figueireido/Colditz], 2P30CA015704-40 [Gilliland], R01 CA207371 [Ulrich/Li]), the Matthias Lackas-Foundation, the German Consortium for Translational Cancer Research, and the EU TRANSCAN initiative.

The Colon Cancer Family Registry (CCFR, https://www.coloncfr.org) is supported in part by funding from the National Cancer Institute (NCI), National Institutes of Health (NIH) (award U01 CA167551). Support for case ascertainment was provided in part from the Surveillance, Epidemiology, and End Results (SEER) Program and the following U.S. state cancer registries: AZ, CO, MN, NC, NH; and by the Victoria Cancer Registry (Australia) and Ontario Cancer Registry (Canada). The CCFR Set-1 (Illumina 1 M/1M-Duo) and Set-2 (Illumina Omni1-Quad) scans were supported by NIH awards U01 CA122839 and R01 CA143247 (to GC). The CCFR Set-3 (Affymetrix Axiom CORECT Set array) was supported by NIH award U19 CA148107 and R01 CA81488 (to SBG). The CCFR Set-4 (Illumina OncoArray 600K SNP array) was supported by NIH award U19 CA148107 (to SBG) and by the Center for Inherited Disease Research (CIDR), which is funded by the NIH to the Johns Hopkins University, contract number HHSN268201200008I. Additional funding for the OFCCR/ARCTIC was through award GL201-043 from the Ontario Research Fund (to BWZ), award 112746 from the Canadian Institutes of Health Research (to TJH), through a Cancer Risk Evaluation (CaRE) Program grant from the Canadian Cancer Society (to SG), and through generous support from the Ontario Ministry of Research and Innovation. The SFCCR Illumina HumanCytoSNP array was supported in part through NCI/NIH awards U01 CA074794 (to JDP) and /U24 CA074794 and R01 CA076366 (to PAN). The content of this manuscript does not necessarily reflect the views or policies of the NCI, NIH, or any of the collaborating centers in the Colon Cancer Family Registry (CCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government, any cancer registry, or the CCFR.

COLON: The COLON study is sponsored by Wereld Kanker Onderzoek Fonds, including funds from grant 2014/1179 as part of the World Cancer Research Fund International Regular Grant Programme, by Alpe d’Huzes and the Dutch Cancer Society (UM 2012-5653, UW 2013-5927, UW2015-7946), and by TRANSCAN (JTC2012-MetaboCCC, JTC2013-FOCUS). The Nqplus study is sponsored by a ZonMW investment grant (98-10030); by PREVIEW, the project PREVention of diabetes through lifestyle intervention and population studies in Europe and around the World (PREVIEW) project which received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant no. 312057; by funds from TI Food and Nutrition (cardiovascular health theme), a public–private partnership on precompetitive research in food and nutrition; and by FOODBALL, the Food Biomarker Alliance, a project from JPI Healthy Diet for a Healthy Life.

Colorectal Cancer Transdisciplinary (CORECT) Study: The CORECT Study was supported by the National Cancer Institute, National Institutes of Health (NCI/NIH), U.S. Department of Health and Human Services (grant numbers U19 CA148107, R01 CA81488, P30 CA014089, R01 CA197350; P01 CA196569; R01 CA201407) and National Institutes of Environmental Health Sciences, National Institutes of Health (grant number T32 ES013678).

CORSA: “Österreichische Nationalbank Jubiläumsfondsprojekt” (12511) and Austrian Research Funding Agency (FFG) grant 829675.

CPS-II: The American Cancer Society funds the creation, maintenance, and updating of the Cancer Prevention Study-II (CPS-II) cohort. This study was conducted with Institutional Review Board approval.

CRCGEN: Colorectal Cancer Genetics & Genomics, Spanish study was supported by Instituto de Salud Carlos III, co-funded by FEDER funds – a way to build Europe – (grants PI14-613 and PI09-1286), Agency for Management of University and Research Grants (AGAUR) of the Catalan Government (grant 2017SGR723), and Junta de Castilla y León (grant LE22A10-2). Sample collection of this work was supported by the Xarxa de Bancs de Tumors de Catalunya sponsored by Pla Director d’Oncología de Catalunya (XBTC), Plataforma Biobancos PT13/0010/0013 and ICOBIOBANC, sponsored by the Catalan Institute of Oncology.

Czech Republic CCS: This work was supported by the Czech Science Foundation (20-03997 S) and by the Grant Agency of the Ministry of Health of the Czech Republic (grants NV18/03/00199 and NU21-07-00247).

DACHS: This work was supported by the German Research Council (BR 1704/6-1, BR 1704/6-3, BR 1704/6-4, CH 117/1-1, HO 5117/2-1, HE 5998/2-1, KL 2354/3-1, RO 2270/8-1, and BR 1704/17-1), the Interdisciplinary Research Program of the National Center for Tumor Diseases (NCT), Germany, and the German Federal Ministry of Education and Research (01KH0404, 01ER0814, 01ER0815, 01ER1505A, and 01ER1505B).

DALS: National Institutes of Health (R01 CA48998 to M.L. Slattery).

EDRN: This work is funded and supported by the NCI, EDRN Grant (U01 CA 84968-06).

EPIC: The coordination of EPIC is financially supported by the European Commission (DGSANCO) and the International Agency for Research on Cancer. The national cohorts are supported by Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); German Cancer Aid, German Cancer Research Center (DKFZ), Federal Ministry of Education and Research (BMBF), Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro-AIRCItaly and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); ERC-2009-AdG 232997 and Nordforsk, Nordic Centre of Excellence programme on Food, Nutrition and Health (Norway); Health Research Fund (FIS), PI13/00061 to Granada, PI13/01162 to EPIC-Murcia, Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, ISCIII RETIC (RD06/0020) (Spain); Swedish Cancer Society, Swedish Research Council and County Councils of Skåne and Västerbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; C570/A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk, MR/M012190/1 to EPICOxford) (United Kingdom).

The EPIC-Norfolk study (https://doi.org/10.22025/2019.10.105.00004) has received funding from the Medical Research Council (MR/N003284/1 and MC-UU_12015/1) and Cancer Research UK (C864/A14136). The genetics work in the EPIC-Norfolk study was funded by the Medical Research Council (MC_PC_13048). Metabolite measurements in the EPIC-Norfolk study were supported by the MRC Cambridge Initiative in Metabolic Science (MR/L00002/1) and the Innovative Medicines Initiative Joint Undertaking under EMIF grant agreement no. 115372.

EPICOLON: This work was supported by grants from Fondo de Investigación Sanitaria/FEDER (PI08/0024, PI08/1276, PS09/02368, PI11/00219, PI11/00681, PI14/00173, PI14/00230, PI17/00509, 17/00878, PI20/00113, PI20/00226, Acción Transversal de Cáncer), Xunta de Galicia (PGIDIT07PXIB9101209PR), Ministerio de Economia y Competitividad (SAF07-64873, SAF 2010-19273, SAF2014-54453R), Fundación Científica de la Asociación Española contra el Cáncer (GCB13131592CAST), Beca Grupo de Trabajo “Oncología” AEG (Asociación Española de Gastroenterología), Fundación Privada Olga Torres, FP7 CHIBCHA Consortium, Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR, Generalitat de Catalunya, 2014SGR135, 2014SGR255, 2017SGR21, 2017SGR653), Catalan Tumour Bank Network (Pla Director d’Oncologia, Generalitat de Catalunya), PERIS (SLT002/16/00398, Generalitat de Catalunya), CERCA Programme (Generalitat de Catalunya) and COST Actions BM1206 and CA17118. CIBERehd is funded by the Instituto de Salud Carlos III.

ESTHER/VERDI. This work was supported by grants from the Baden-Württemberg Ministry of Science, Research and Arts and the German Cancer Aid.

Harvard cohorts (HPFS, NHS, PHS): HPFS is supported by the National Institutes of Health (P01 CA055075, UM1 CA167552, U01 CA167552, R01 CA137178, R01 CA151993, R35 CA197735, K07 CA190673, and P50 CA127003), NHS by the National Institutes of Health (R01 CA137178, P01 CA087969, UM1 CA186107, R01 CA151993, R35 CA197735, K07CA190673, and P50 CA127003) and PHS by the National Institutes of Health (R01 CA042182).

Hawaii Adenoma Study: NCI grants R01 CA72520.

HCES-CRC: the Hwasun Cancer Epidemiology Study–Colon and Rectum Cancer (HCES-CRC; grants from Chonnam National University Hwasun Hospital, HCRI15011-1).

Kentucky: This work was supported by the following grant support: Clinical Investigator Award from Damon Runyon Cancer Research Foundation (CI-8); NCI R01CA136726.

LCCS: The Leeds Colorectal Cancer Study was funded by the Food Standards Agency and Cancer Research UK Programme Award (C588/A19167).

Melbourne Collaborative Cohort Study (MCCS) cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further augmented by Australian National Health and Medical Research Council grants 209057, 396414, and 1074383 and by infrastructure provided by Cancer Council Victoria. Cases and their vital status were ascertained through the Victorian Cancer Registry and the Australian Institute of Health and Welfare, including the National Death Index and the Australian Cancer Database.

Multiethnic Cohort (MEC) Study: National Institutes of Health (R37 CA54281, P01 CA033619, R01 CA063464, and U01 CA164973).

MECC: This work was supported by the National Institutes of Health, U.S. Department of Health and Human Services (R01 CA81488 to SBG and GR).

MSKCC: The work at Sloan Kettering in New York was supported by the Robert and Kate Niehaus Center for Inherited Cancer Genomics and the Romeo Milio Foundation. Moffitt: This work was supported by funding from the National Institutes of Health (grant numbers R01 CA189184, P30 CA076292), Florida Department of Health Bankhead-Coley Grant 09BN-13, and the University of South Florida Oehler Foundation. Moffitt contributions were supported in part by the Total Cancer Care Initiative, Collaborative Data Services Core, and Tissue Core at the H. Lee Moffitt Cancer Center & Research Institute, a National Cancer Institute-designated Comprehensive Cancer Center (grant number P30 CA076292).

NCCCS I & II: We acknowledge funding support for this project from the National Institutes of Health, R01 CA66635 and P30 DK034987.

NFCCR: This work was supported by an Interdisciplinary Health Research Team award from the Canadian Institutes of Health Research (CRT 43821); the National Institutes of Health, U.S. Department of Health and Human Serivces (U01 CA74783); and National Cancer Institute of Canada grants (18223 and 18226). We wish to acknowledge the contribution of Alexandre Belisle and the genotyping team of the McGill University and Génome Québec Innovation Centre, Montréal, Canada, for genotyping the Sequenom panel in the NFCCR samples. Funding was provided to Michael O. Woods by the Canadian Cancer Society Research Institute.

NSHDS: Swedish Research Council; Swedish Cancer Society; Cutting-Edge Research Grant and other grants from Region Västerbotten; Knut and Alice Wallenberg Foundation; Lion’s Cancer Research Foundation at Umeå University; the Cancer Research Foundation in Northern Sweden; and the Faculty of Medicine, Umeå University, Umeå, Sweden.

OSUMC: OCCPI funding was provided by Pelotonia and HNPCC funding was provided by the NCI (CA16058 and CA67941).

PLCO: Intramural Research Program of the Division of Cancer Epidemiology and Genetics and supported by contracts from the Division of Cancer Prevention, National Cancer Institute, NIH, DHHS. Funding was provided by National Institutes of Health (NIH), Genes, Environment and Health Initiative (GEI) Z01 CP 010200, NIH U01 HG004446, and NIH GEI U01 HG 004438.

SEARCH: The University of Cambridge has received salary support in respect of PDPP from the NHS in the East of England through the Clinical Academic Reserve. Cancer Research UK (C490/A16561); the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge.

SELECT: Research reported in this publication was supported in part by the National Cancer Institute of the National Institutes of Health under Award Numbers U10 CA37429 (CD Blanke), and UM1 CA182883 (CM Tangen/IM Thompson). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

SMS and REACH: This work was supported by the National Cancer Institute grant P01 CA074184 to JDP and PAN, grants R01 CA097325, R03 CA153323, and K05 CA152715 to PAN, and the National Center for Advancing Translational Sciences at the National Institutes of Health (grant KL2 TR000421 to ANB-H).

The Swedish Low-risk Colorectal Cancer Study: The study was supported by grants from the Swedish research council; K2015-55X-22674-01-4, K2008-55X-20157-03-3, K2006-72X-20157-01-2, and the Stockholm County Council (ALF project).

Swedish Mammography Cohort and Cohort of Swedish Men: This work is supported by the Swedish Research Council /Infrastructure grant, the Swedish Cancer Foundation, and the Karolinska Institute´s Distinguished Professor Award to Alicja Wolk.

UK Biobank: This research has been conducted using the UK Biobank Resource under Application Number 8,614

VITAL: National Institutes of Health (K05 CA154337).

WHI: The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, and HHSN271201100004C.

Ethics

Human subjects: For the UK Biobank, all participants provided informed written consent and the National Research Ethics Service Committee North West-Haydock approved the study. All procedures in the UK Biobank study were conducted in accordance to the World Medical Association declaration of Helsinki ethical principles for medical research.

Copyright

© 2022, Martin et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,822
    views
  • 475
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Susan Martin
  2. Jessica Tyrrell
  3. E Louise Thomas
  4. Matthew J Bown
  5. Andrew R Wood
  6. Robin N Beaumont
  7. Lam C Tsoi
  8. Philip E Stuart
  9. James T Elder
  10. Philip Law
  11. Richard Houlston
  12. Christopher Kabrhel
  13. Nikos Papadimitriou
  14. Marc J Gunter
  15. Caroline J Bull
  16. Joshua A Bell
  17. Emma E Vincent
  18. Naveed Sattar
  19. Malcolm G Dunlop
  20. Ian PM Tomlinson
  21. Sara Lindström
  22. INVENT consortium
  23. Jimmy D Bell
  24. Timothy M Frayling
  25. Hanieh Yaghootkar
(2022)
Disease consequences of higher adiposity uncoupled from its adverse metabolic effects using Mendelian randomisation
eLife 11:e72452.
https://doi.org/10.7554/eLife.72452

Share this article

https://doi.org/10.7554/eLife.72452

Further reading

    1. Epidemiology and Global Health
    Xiaoning Wang, Jinxiang Zhao ... Dong Liu
    Research Article

    Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.