Heterogeneity of the GFP fitness landscape and data-driven protein design

  1. Louisa Gonzalez Somermeyer
  2. Aubin Fleiss
  3. Alexander S Mishin
  4. Nina G Bozhanova
  5. Anna A Igolkina
  6. Jens Meiler
  7. Maria-Elisenda Alaball Pujol
  8. Ekaterina V Putintseva
  9. Karen S Sarkisyan  Is a corresponding author
  10. Fyodor A Kondrashov  Is a corresponding author
  1. Institute of Science and Technology Austria, Austria
  2. MRC London Institute of Medical Sciences, United Kingdom
  3. Russian Academy of Sciences, Russian Federation
  4. Vanderbilt University, United States
  5. Austrian Academy of Sciences, Austria
  6. LabGenius, United Kingdom

Abstract

Studies of protein fitness landscapes reveal biophysical constraints guiding protein evolution and empower prediction of functional proteins. However, generalisation of these findings is limited due to scarceness of systematic data on fitness landscapes of proteins with a defined evolutionary relationship. We characterized the fitness peaks of four orthologous fluorescent proteins with a broad range of sequence divergence. While two of the four studied fitness peaks were sharp, the other two were considerably flatter, being almost entirely free of epistatic interactions. Mutationally robust proteins, characterized by a flat fitness peak, were not optimal templates for machine-learning-driven protein design - instead, predictions were more accurate for fragile proteins with epistatic landscapes. Our work paves insights for practical application of fitness landscape heterogeneity in protein engineering.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file and are available on GitHub https://github.com/aequorea238/Orthologous_GFP_Fitness_Peaks

The following data sets were generated

Article and author information

Author details

  1. Louisa Gonzalez Somermeyer

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9139-5383
  2. Aubin Fleiss

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander S Mishin

    Department of Genetics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4935-7030
  4. Nina G Bozhanova

    Department of Chemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2164-5698
  5. Anna A Igolkina

    Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8851-9621
  6. Jens Meiler

    Department of Chemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8945-193X
  7. Maria-Elisenda Alaball Pujol

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1868-2674
  8. Ekaterina V Putintseva

    LabGenius, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Karen S Sarkisyan

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    For correspondence
    karen.s.sarkisyan@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Fyodor A Kondrashov

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    fyodor.kondrashov@isc.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8243-4694

Funding

European Research Council (771209-CharFL)

  • Fyodor A Kondrashov

MRC London Institute of Medical Sciences (UKRI MC-A658-5QEA0)

  • Karen S Sarkisyan

President's Grant (МК-5405.2021.1.4)

  • Karen S Sarkisyan

Marie Skłodowska-Curie Fellowship (898203)

  • Aubin Fleiss

Russian Science Foundation (19-74-10102)

  • Alexander S Mishin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Daniel J Kliebenstein, University of California, Davis, United States

Version history

  1. Received: November 25, 2021
  2. Preprint posted: December 9, 2021 (view preprint)
  3. Accepted: March 25, 2022
  4. Accepted Manuscript published: May 5, 2022 (version 1)
  5. Accepted Manuscript updated: May 6, 2022 (version 2)
  6. Version of Record published: May 19, 2022 (version 3)

Copyright

© 2022, Gonzalez Somermeyer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,522
    views
  • 637
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louisa Gonzalez Somermeyer
  2. Aubin Fleiss
  3. Alexander S Mishin
  4. Nina G Bozhanova
  5. Anna A Igolkina
  6. Jens Meiler
  7. Maria-Elisenda Alaball Pujol
  8. Ekaterina V Putintseva
  9. Karen S Sarkisyan
  10. Fyodor A Kondrashov
(2022)
Heterogeneity of the GFP fitness landscape and data-driven protein design
eLife 11:e75842.
https://doi.org/10.7554/eLife.75842

Share this article

https://doi.org/10.7554/eLife.75842

Further reading

    1. Computational and Systems Biology
    Skander Kazdaghli, Iordanis Kerenidis ... Philip Teare
    Research Article

    Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.

    1. Computational and Systems Biology
    Antony M Jose
    Research Article

    Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.