Complex fitness landscape shapes variation in a hyperpolymorphic species

  1. Anastasia V Stolyarova  Is a corresponding author
  2. Tatiana V Neretina
  3. Elena A Zvyagina
  4. Anna V Fedotova
  5. Alexey Kondrashov
  6. Georgii A. Bazykin  Is a corresponding author
  1. Skolkovo Institute of Science and Technology, Russian Federation
  2. Lomonosov Moscow State University, Russian Federation
  3. University of Michigan-Ann Arbor, United States
  4. Russian Academy of Sciences, Russian Federation

Abstract

It is natural to assume that patterns of genetic variation in hyperpolymorphic species can reveal large-scale properties of the fitness landscape that are hard to detect by studying species with ordinary levels of genetic variation. Here, we study such patterns in a fungus Schizophyllum commune, the most polymorphic species known. Throughout the genome, short-range linkage disequilibrium (LD) caused by attraction of minor alleles is higher between pairs of nonsynonymous than of synonymous variants. This effect is especially pronounced for pairs of sites that are located within the same gene, especially if a large fraction of the gene is covered by haploblocks, genome segments where the gene pool consists of two highly divergent haplotypes, which is a signature of balancing selection. Haploblocks are usually shorter than 1000 nucleotides, and collectively cover about 10% of the S. commune genome. LD tends to be substantially higher for pairs of nonsynonymous variants encoding amino acids that interact within the protein. There is a substantial correlation between LDs at the same pairs of nonsynonymous mutations in the USA and the Russian populations. These patterns indicate that selection in S. commune involves positive epistasis due to compensatory interactions between nonsynonymous alleles. When less polymorphic species are studied, analogous patterns can be detected only through interspecific comparisons.

Data availability

Whole-genome alignment of 55 genomes of S. commune is available at https://makarich.fbb.msu.ru/astolyarova/schizophyllum_data/. Genome sequence data are deposited at DDBJ/ENA/GenBank under accession numbers JAGVRL000000000-JAGVSI000000000, BioProject PRJNA720428. Sequencing data are deposited at SRA with accession numbers SRR14467839-SRR14467862.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Anastasia V Stolyarova

    Skolkovo Institute of Science and Technology, Moscow, Russian Federation
    For correspondence
    anastasia.v.stolyarova@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6546-3052
  2. Tatiana V Neretina

    Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  3. Elena A Zvyagina

    Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna V Fedotova

    Skolkovo Institute of Science and Technology, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexey Kondrashov

    Department of Ecology and Evolutionary Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Georgii A. Bazykin

    Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russian Federation
    For correspondence
    gbazykin@iitp.ru
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2334-2751

Funding

No external funding was received for this work.

Reviewing Editor

  1. Emilia Huerta-Sanchez, Brown University, United States

Publication history

  1. Received: December 3, 2021
  2. Accepted: May 9, 2022
  3. Accepted Manuscript published: May 9, 2022 (version 1)

Copyright

© 2022, Stolyarova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 156
    Page views
  • 28
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anastasia V Stolyarova
  2. Tatiana V Neretina
  3. Elena A Zvyagina
  4. Anna V Fedotova
  5. Alexey Kondrashov
  6. Georgii A. Bazykin
(2022)
Complex fitness landscape shapes variation in a hyperpolymorphic species
eLife 11:e76073.
https://doi.org/10.7554/eLife.76073

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Austin H Patton et al.
    Research Article

    Estimating the complex relationship between fitness and genotype or phenotype (i.e. the adaptive landscape) is one of the central goals of evolutionary biology. However, adaptive walks connecting genotypes to organismal fitness, speciation, and novel ecological niches are still poorly understood and processes for surmounting fitness valleys remain controversial. One outstanding system for addressing these connections is a recent adaptive radiation of ecologically and morphologically novel pupfishes (a generalist, molluscivore, and scale-eater) endemic to San Salvador Island, Bahamas. We leveraged whole-genome sequencing of 139 hybrids from two independent field fitness experiments to identify the genomic basis of fitness, estimate genotypic fitness networks, and measure the accessibility of adaptive walks on the fitness landscape. We identified 132 single nucleotide polymorphisms (SNPs) that were significantly associated with fitness in field enclosures. Six out of the 13 regions most strongly associated with fitness contained differentially expressed genes and fixed SNPs between trophic specialists; one gene (mettl21e) was also misexpressed in lab-reared hybrids, suggesting a potential intrinsic genetic incompatibility. We then constructed genotypic fitness networks from adaptive alleles and show that scale-eating specialists are the most isolated of the three species on these networks. Intriguingly, introgressed and de novo variants reduced fitness landscape ruggedness as compared to standing variation, increasing the accessibility of genotypic fitness paths from generalist to specialists. Our results suggest that adaptive introgression and de novo mutations alter the shape of the fitness landscape, providing key connections in adaptive walks circumventing fitness valleys and triggering the evolution of novelty during adaptive radiation.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Beatriz Navarro-Dominguez et al.
    Research Article Updated

    Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation resulting in preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing one of a pair of alternative alleles. While at least two loci are important for male drive—the driver and the target—linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal, multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversions on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over, and with wildtype chromosomes via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.