The interferon-inducible GTPase MxB promotes capsid disassembly and genome release of herpesviruses

  1. Manutea C Serrero
  2. Virginie Girault
  3. Sebastian Weigang
  4. Todd M Greco
  5. Ana Ramos Nascimento
  6. Fenja Anderson
  7. Antonio Piras
  8. Ana Hickford Martinez
  9. Jonny Hertzog
  10. Anne Binz
  11. Anja Pohlmann
  12. Ute Prank
  13. Jan Rehwinkel
  14. Rudolf Bauerfeind
  15. Ileana M Cristea
  16. Andreas Pichlmair
  17. Georg Kochs
  18. Beate Sodeik  Is a corresponding author
  1. Hannover Medical School, Germany
  2. Technical University of Munich, Germany
  3. University of Freiburg, Germany
  4. Princeton University, United States
  5. University of Oxford, United Kingdom

Abstract

Host proteins sense viral products and induce defence mechanisms, particularly in immune cells. Using cell-free assays and quantitative mass spectrometry, we determined the interactome of capsid-host protein complexes of herpes simplex virus and identified the large dynamin-like GTPase myxovirus resistance protein B (MxB) as an interferon-inducible protein interacting with capsids. Electron microscopy analyses showed that cytosols containing MxB had the remarkable capability to disassemble the icosahedral capsids of herpes simplex viruses and varicella zoster virus into flat sheets of connected triangular faces. In contrast, capsids remained intact in cytosols with MxB mutants unable to hydrolyse GTP or to dimerize. Our data suggest that MxB senses herpesviral capsids, mediates their disassembly, and thereby restricts the efficiency of nuclear targeting of incoming capsids and/or the assembly of progeny capsids. The resulting premature release of viral genomes from capsids may enhance the activation of DNA sensors, and thereby amplify the innate immune responses.

Data availability

The raw datasets produced in this study are available at PRIDE (PXD028276; http://www.ebi.ac.uk/pride). The dataset analyses and the raw bottling images are included in the Supplementary Files 1-3 and in the Source Data folder, respectively.

The following data sets were generated

Article and author information

Author details

  1. Manutea C Serrero

    Institute of Virology, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8221-2725
  2. Virginie Girault

    Institute of Virology, Technical University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sebastian Weigang

    Institute of Virology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Todd M Greco

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ana Ramos Nascimento

    Institute of Virology, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Fenja Anderson

    Institute of Virology, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Antonio Piras

    Institute of Virology, Technical University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ana Hickford Martinez

    Institute of Virology, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Jonny Hertzog

    MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7089-982X
  10. Anne Binz

    Institute of Virology, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Anja Pohlmann

    Institute of Virology, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Ute Prank

    Institute of Virology, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Jan Rehwinkel

    MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Rudolf Bauerfeind

    Institute of Virology, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Ileana M Cristea

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Andreas Pichlmair

    Institute of Virology, Technical University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0166-1367
  17. Georg Kochs

    Institute of Virology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  18. Beate Sodeik

    Institue of Virology, Hannover Medical School, Hannover, Germany
    For correspondence
    sodeik.beate@mh-hannover.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4650-3036

Funding

Horizon 2020 Framework Programme (H2020-EU.1.3.1)

  • Jan Rehwinkel
  • Andreas Pichlmair
  • Beate Sodeik

Medical Research Council

  • Jan Rehwinkel

National Institutes of Health (NIGMS,GM114141)

  • Ileana M Cristea

European Research Council (ERC-CoG ProDAP 817798)

  • Andreas Pichlmair

Deutsche Forschungsgemeinschaft (PI1084/3,PI1084/4,PI1084/5,TRR179,and TRR237)

  • Andreas Pichlmair

Deutsche Forschungsgemeinschaft (KO1579/13)

  • Georg Kochs

Deutsche Forschungsgemeinschaft (CRC900 C2 158989968,EXC62 REBIRTH 24102914,EXC2155 RESIST 390874280,SO403/6)

  • Beate Sodeik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Serrero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,158
    views
  • 357
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manutea C Serrero
  2. Virginie Girault
  3. Sebastian Weigang
  4. Todd M Greco
  5. Ana Ramos Nascimento
  6. Fenja Anderson
  7. Antonio Piras
  8. Ana Hickford Martinez
  9. Jonny Hertzog
  10. Anne Binz
  11. Anja Pohlmann
  12. Ute Prank
  13. Jan Rehwinkel
  14. Rudolf Bauerfeind
  15. Ileana M Cristea
  16. Andreas Pichlmair
  17. Georg Kochs
  18. Beate Sodeik
(2022)
The interferon-inducible GTPase MxB promotes capsid disassembly and genome release of herpesviruses
eLife 11:e76804.
https://doi.org/10.7554/eLife.76804

Share this article

https://doi.org/10.7554/eLife.76804

Further reading

    1. Immunology and Inflammation
    Yalan Jiang, Pingping He ... Xiaoou Shan
    Research Article

    Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the potential effects of EUG on T1DM had not been investigated. In this study, we established the streptozotocin (STZ)-induced T1DM mouse model in vivo and STZ-induced pancreatic β cell MIN6 cell model in vitro to investigate the protective effects of EUG on T1DM, and tried to elucidate its potential mechanism. Our findings demonstrated that the intervention of EUG could effectively induce the activation of nuclear factor E2-related factor 2 (NRF2), leading to an up-regulation in the expressions of downstream proteins NQO1 and HMOX1, which are regulated by NRF2. Moreover, this intervention exhibited a significant amelioration in pancreatic β cell damage associated with T1DM, accompanied by an elevation in insulin secretion and a reduction in the expression levels of apoptosis and oxidative stress-related markers. Furthermore, ML385, an NRF2 inhibitor, reversed these effects of EUG. The present study suggested that EUG exerted protective effects on pancreatic β cells in T1DM by attenuating apoptosis and oxidative stress through the activation of the NRF2 signaling pathway. Consequently, EUG holds great promise as a potential therapeutic candidate for T1DM.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Peng Li, Sree Pulugulla ... Warren J Leonard
    Short Report

    Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.