Two novel, tightly linked, and rapidly evolving genes underlie Aedes aegypti mosquito reproductive resilience during drought
Abstract
Female Aedes aegypti mosquitoes impose a severe global public health burden as vectors of multiple viral pathogens. Under optimal environmental conditions, Aedes aegypti females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, Aedes aegypti females are faced with climate challenges like intense droughts and intermittent precipitation, which create unpredictable, suboptimal conditions for egg-laying. Here we show that under drought-like conditions simulated in the laboratory, females retain mature eggs in their ovaries for extended periods, while maintaining the viability of these eggs until they can be laid in freshwater. Using transcriptomic and proteomic profiling of Aedes aegypti ovaries, we identify two previously uncharacterized genes named tweedledee and tweedledum, each encoding a small, secreted protein that both show ovary-enriched, temporally-restricted expression during egg retention. These genes are mosquito-specific, linked within a syntenic locus, and rapidly evolving under positive selection, raising the possibility that they serve an adaptive function. CRISPR-Cas9 deletion of both tweedledee and tweedledum demonstrates that they are specifically required for extended retention of viable eggs. These results highlight an elegant example of taxon-restricted genes at the heart of an important adaptation that equips Aedes aegypti females with 'insurance' to flexibly extend their reproductive schedule without losing reproductive capacity, thus allowing this species to exploit unpredictable habitats in a changing world.
Data availability
RNA-sequencing data have been deposited in GEO under accession code GSE193470.The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD030925. Ovary sample raw files begin with the code "MS205850LUM". Hemolymph sample raw files begin with the code "MS195106LUM".All raw data included in the figures are available at Zenodo: https://doi.org/10.5281/zenodo.5945525
-
Aedes aegypti ovary bulk RNA-seqNCBI Gene Expression Omnibus, GSE193470.
Article and author information
Author details
Funding
Boehringer Ingelheim Fonds (BIF PhD Fellowship)
- Krithika Venkataraman
Sohn Conferences Foundation
- Henrik Molina
Monique Weill-Caulier Career Scientist Award
- Li Zhao
Robertson Foundation
- Li Zhao
Howard Hughes Medical Institute
- Leslie B Vosshall
Kavli Foundation (KNSI Pre-doctoral fellowship)
- Margaret Herre
National Institutes of Health (F30DC017658)
- Margaret Herre
European Molecular Biology Organization (EMBO ALTF 286-2019)
- Nadav Shai
National Institutes of Health (MIRA R35GM133780)
- Li Zhao
Rita Allen Foundation (Rita Allen Scholar)
- Li Zhao
Vallee Foundation (VS-2020-35)
- Li Zhao
National Institutes of Health (NRSA Training Grant #GM066699)
- Lauren A Neal
Leona M. and Harry B. Helmsley Charitable Trust
- Henrik Molina
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Blood-feeding using live mice was approved and monitored by The Rockefeller University Institutional Animal Care and Use Committee (IACUC protocol 17018).
Human subjects: Behavioral experiments and blood-feeding using live hosts were approved and monitored by The Rockefeller University Institutional Review Board (IRB protocol LV-0652). All human subjects gave their written informed consent to participate in this study.
Reviewing Editor
- Daniel R Matute, University of North Carolina, Chapel Hill, United States
Publication history
- Received: May 22, 2022
- Accepted: January 29, 2023
- Accepted Manuscript published: February 6, 2023 (version 1)
Copyright
© 2023, Venkataraman et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,534
- Page views
-
- 232
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
- Microbiology and Infectious Disease
Increasing numbers of small proteins with diverse physiological roles are being identified and characterized in both prokaryotic and eukaryotic systems, but the origins and evolution of these proteins remain unclear. Recent genomic sequence analyses in several organisms suggest that new functions encoded by small open reading frames (sORFs) may emerge de novo from noncoding sequences. However, experimental data demonstrating if and how randomly generated sORFs can confer beneficial effects to cells are limited. Here, we show that by upregulating hisB expression, de novo small proteins (≤50 amino acids in length) selected from random sequence libraries can rescue Escherichia coli cells that lack the conditionally essential SerB enzyme. The recovered small proteins are hydrophobic and confer their rescue effect by binding to the 5′ end regulatory region of the his operon mRNA, suggesting that protein binding promotes structural rearrangements of the RNA that allow increased hisB expression. This study adds RNA regulatory elements as another interacting partner for de novo proteins isolated from random sequence libraries and provides further experimental evidence that small proteins with selective benefits can originate from the expression of nonfunctional sequences.
-
- Evolutionary Biology
- Microbiology and Infectious Disease
Many bacterial genomes carry prophages whose induction can eliminate competitors. In response, bacteria may become resistant by modifying surface receptors, by lysogenization, or by other poorly known processes. All these mechanisms affect bacterial fitness and population dynamics. To understand the evolution of phage resistance, we co-cultivated a phage-sensitive strain (BJ1) and a poly-lysogenic Klebsiella pneumoniae strain (ST14) under different phage pressures. The population yield remained stable after 30 days. Surprisingly, the initially sensitive strain remained in all populations and its frequency was highest when phage pressure was strongest. Resistance to phages in these populations emerged initially through mutations preventing capsule biosynthesis. Protection through lysogeny was rarely observed because the lysogens have increased death rates due to prophage induction. Unexpectedly, the adaptation process changed at longer time scales the frequency of capsulated cells in BJ1 populations increased again, because the production of capsule was fine-tuned, reducing the ability of phage to absorb. Contrary to the lysogens, these capsulated resistant clones are pan-resistant to a large panel of phages. Intriguingly, some clones exhibited transient non-genetic resistance to phages, suggesting an important role of phenotypic resistance in coevolving populations. Our results show that interactions between lysogens and sensitive strains are shaped by antagonistic co-evolution between phages and bacteria. These processes may involve key physiological traits, such as the capsule, and depend on the time frame of the evolutionary process. At short time scales, simple and costly inactivating mutations are adaptive, but in the long-term, changes drawing more favorable trade-offs between resistance to phages and cell fitness become prevalent.