Neural dynamics underlying self-control in the primate subthalamic nucleus
Abstract
The subthalamic nucleus (STN) is hypothesized to play a central role in neural processes that regulate self-control. Still uncertain, however, is how that brain structure participates in the dynamically evolving estimation of value that underlies the ability to delay gratification and wait patiently for a gain. To address that gap in knowledge, we studied the spiking activity of neurons in the STN of monkeys during a task in which animals were required to remain motionless for varying periods of time in order to obtain food reward. At the single-neuron and population levels, we found a cost-benefit integration between the desirability of the expected reward and the imposed delay to reward delivery, with STN signals that dynamically combined both attributes of the reward to form a single integrated estimate of value. This neural encoding of subjective value evolved dynamically across the waiting period that intervened after instruction cue. Moreover, this encoding was distributed inhomogeneously along the antero-posterior axis of the STN such that the most dorso-posterior-placed neurons represented the temporal discounted value most strongly. These findings highlight the selective involvement of the dorso-posterior STN in the representation of temporally discounted rewards. The combination of rewards and time delays into an integrated representation is essential for self-control, the promotion of goal pursuit and the willingness to bear the costs of time delays.
Data availability
Data analysed during this study are available at https://github.com/benjaminpasquereau/Neural-dynamics-underlying-self-control-in-the-primate-subthalamic-nucleus
Article and author information
Author details
Funding
NIH (NIH R01 NS113817-01)
- Robert S Turner
NIH (NIH R01 NS091853-01)
- Robert S Turner
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Two rhesus monkeys (monkey C, 8 kg, male; and monkey H, 6 kg, female) were used in this study. Procedures were approved by the Institutional Animal Care and Use Committee of the University of Pittsburgh (protocol number: 12111162) and complied with the Public Health Service Policy on thehumane care and use of laboratory animals (amended 2002). When animals were not in active use, they were housed in individual primate cages in an air-conditioned room where water was always available. The monkeys' access to food was regulated to increase their motivation to perform the task. Throughout the study, the animals were monitored daily by an animal research technician or veterinary technician for evidence of disease or injury and body weight was documented weekly. If a body weight <90% of baseline was observed, the food regulation was stopped.
Reviewing Editor
- Naoshige Uchida, Harvard University, United States
Publication history
- Received: October 5, 2022
- Accepted: May 18, 2023
- Accepted Manuscript published: May 19, 2023 (version 1)
Copyright
© 2023, Pasquereau & Turner
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 194
- Page views
-
- 73
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
One signature of the human brain is its ability to derive knowledge from language inputs, in addition to nonlinguistic sensory channels such as vision and touch. How does human language experience modulate the mechanism by which semantic knowledge is stored in the human brain? We investigated this question using a unique human model with varying amounts and qualities of early language exposure: early deaf adults who were born to hearing parents and had reduced early exposure and delayed acquisition of any natural human language (speech or sign), with early deaf adults who acquired sign language from birth as the control group that matches on nonlinguistic sensory experiences. Neural responses in a semantic judgment task with 90 written words that were familiar to both groups were measured using fMRI. The deaf group with reduced early language exposure, compared with the deaf control group, showed reduced semantic sensitivity, in both multivariate pattern (semantic structure encoding) and univariate (abstractness effect) analyses, in the left dorsal anterior temporal lobe (dATL). These results provide positive, causal evidence that language experience drives the neural semantic representation in the dATL, highlighting the roles of language in forming human neural semantic structures beyond nonverbal sensory experiences.
-
- Neuroscience
Across phyla, males often produce species-specific vocalizations to attract females. Although understanding the neural mechanisms underlying behavior has been challenging in vertebrates, we previously identified two anatomically distinct central pattern generators (CPGs) that drive the fast and slow clicks of male Xenopus laevis, using an ex vivo preparation that produces fictive vocalizations. Here, we extended this approach to four additional species, X. amieti, X. cliivi, X. petersii, and X. tropicalis, by developing ex vivo brain preparation from which fictive vocalizations are elicited in response to a chemical or electrical stimulus. We found that even though the courtship calls are species-specific, the CPGs used to generate clicks are conserved across species. The fast CPGs, which critically rely on reciprocal connections between the parabrachial nucleus and the nucleus ambiguus, are conserved among fast-click species, and slow CPGs are shared among slow-click species. In addition, our results suggest that testosterone plays a role in organizing fast CPGs in fast-click species, but not in slow-click species. Moreover, fast CPGs are not inherited by all species but monopolized by fast-click species. The results suggest that species-specific calls of the genus Xenopus have evolved by utilizing conserved slow and/or fast CPGs inherited by each species.