Neural mechanisms of parasite-induced summiting behavior in 'zombie' Drosophila
Abstract
For at least two centuries, scientists have been enthralled by the 'zombie' behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the recently established Entomophthora muscae-Drosophila melanogaster 'zombie fly' system to reveal the molecular and cellular underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a new, high-throughput behavior assay to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), who are solely responsible for juvenile hormone (JH) synthesis and release. Summiting is a fleeting phenomenon, posing a challenge for physiological and biochemical experiments requiring tissue from summiting flies. We addressed this with a machine learning classifier to identify summiting animals in real time. PI-CA neurons and CA appear to be intact in summiting animals, despite E. muscae cells invading the host brain, particularly in the superior medial protocerebrum (SMP), the neuropil that contains DN1p axons and PI-CA dendrites. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly's hemolymph, activating the neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.
Data availability
Data supporting these results and the analysis code are available at http://lab.debivort.org/zombie-summiting/ and https://doi.org/10.5281/zenodo.7464925. All raw behavioral tracking (centroid versus time) data are available via Harvard Dataverse at https://doi.org/10.7910/DVN/LTMCFR.
Article and author information
Author details
Funding
Howard Hughes Medical Institute (GT11087)
- Carolyn Elya
Harvard Quantitative Biology Initiative
- Danylo Lavrentovich
Alfred P. Sloan Foundation (Research Fellowship)
- Benjamin L de Bivort
Esther A. and Joseph Klingenstein Fund (Klingenstein-Simons Fellowship Award)
- Benjamin L de Bivort
Richard and Susan Smith Family Foundation (Odyssey Award)
- Benjamin L de Bivort
Harvard/MIT (Basic Neuroscience Grant)
- Benjamin L de Bivort
National Science Foundation (IOS-1557913)
- Benjamin L de Bivort
National Institute of Neurological Disorders and Stroke (1R01NS121874-01)
- Benjamin L de Bivort
NSF-Simons Center for Mathematical and Statistical Analysis of Biology (1764269)
- Danylo Lavrentovich
Harvard Mind Brain and Behavior Initiative (Postdoctoral Fellow Award)
- Carolyn Elya
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Sonia Sen, Tata Institute for Genetics and Society, India
Publication history
- Received: December 6, 2022
- Accepted: May 14, 2023
- Accepted Manuscript published: May 15, 2023 (version 1)
Copyright
© 2023, Elya et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 645
- Page views
-
- 141
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
- Genetics and Genomics
Regulatory networks underlying innate immunity continually face selective pressures to adapt to new and evolving pathogens. Transposable elements (TEs) can affect immune gene expression as a source of inducible regulatory elements, but the significance of these elements in facilitating evolutionary diversification of innate immunity remains largely unexplored. Here, we investigated the mouse epigenomic response to type II interferon (IFN) signaling and discovered that elements from a subfamily of B2 SINE (B2_Mm2) contain STAT1 binding sites and function as IFN-inducible enhancers. CRISPR deletion experiments in mouse cells demonstrated that a B2_Mm2 element has been co-opted as an enhancer driving IFN-inducible expression of Dicer1. The rodent-specific B2 SINE family is highly abundant in the mouse genome and elements have been previously characterized to exhibit promoter, insulator, and non-coding RNA activity. Our work establishes a new role for B2 elements as inducible enhancer elements that influence mouse immunity, and exemplifies how lineage-specific TEs can facilitate evolutionary turnover and divergence of innate immune regulatory networks.
-
- Genetics and Genomics
Upstream open reading frames (uORFs) are potent cis-acting regulators of mRNA translation and nonsense-mediated decay (NMD). While both AUG- and non-AUG initiated uORFs are ubiquitous in ribosome profiling studies, few uORFs have been experimentally tested. Consequently, the relative influences of sequence, structural, and positional features on uORF activity have not been determined. We quantified thousands of yeast uORFs using massively parallel reporter assays in wildtype and ∆upf1 yeast. While nearly all AUG uORFs were robust repressors, most non-AUG uORFs had relatively weak impacts on expression. Machine learning regression modeling revealed that both uORF sequences and locations within transcript leaders predict their effect on gene expression. Indeed, alternative transcription start sites highly influenced uORF activity. These results define the scope of natural uORF activity, identify features associated with translational repression and NMD, and suggest that the locations of uORFs in transcript leaders are nearly as predictive as uORF sequences.