Microbiome: Finding common connections
Living inside the gut of most mammals, including humans, is a unique cocktail of bacteria and other microbes collectively known as the gut microbiome. How individuals end up hosting such varied populations depends not only on the microbes they acquire from their environment, but also on how these organisms ecologically interact with one another inside the gut. For example, some microbes may be excluded from a host by a competitor (negative association; Mäklin et al., 2022), while others may be promoted to grow due to the mutual benefits provided by another microbe (positive association; Seth and Taga, 2014). Which bacteria end up in the microbiome has consequences for the health of the host (Suzuki, 2017). Therefore, understanding how bacteria in the gut interact, and whether these interactions are consistent across individuals, could help researchers develop better therapeutic drugs for recovering and maintaining a healthy gut microbiome.
Negative and positive interactions are typically measured by growing closely related groups of bacteria, known as taxa, in the presence or absence of other taxa (Foster and Bell, 2012; Gould et al., 2018). However, these kinds of experiments are practically impossible to carry out for communities as diverse as the gut microbiome. To overcome this, scientists study individual microbiomes to determine which bacterial taxa frequently occur together (suggesting they promote each other’s growth), and which rarely inhabit the same host (suggesting they are likely to be competitors). However, this approach does not reveal if interactions are consistent across different hosts (i.e. universal), or are unique to bacterial communities inside each individual.
Now, in eLife, Elizabeth Archie from the University of Notre Dame and colleagues – including Kimberley Roche as first author – report how different bacterial taxa fluctuate over time in the gut of wild baboons to determine if the interactions between them are universal (Roche et al., 2023). The team (who are based at various institutes in the United States and Germany) used data from a long-term study of wild baboons living in Amboseli, Kenya which had their microbiomes sampled hundreds of times between 2000 and 2013. Using a statistical model they had developed, Roche et al. tracked how the quantity of individual taxa rose and declined over time. These traces were then compared to determine which bacterial taxa fluctuated together (positive association) and which rose and fell in opposing directions (negative association).
Next, Roche et al. examined if the associations among bacteria were comparable across individuals. The strength and direction of the correlations (i.e. whether they were positive or negative) were remarkably consistent across the 56 baboons studied, suggesting that ecological interactions in the gut microbiome are mostly universal (Figure 1). Most of these associations were relatively weak and negative, suggesting that gut bacteria usually do not help one another grow, but rather compete with each other or thrive in different states, such as hosts with specific variations in their immune or endocrine systems. This result aligns well with ecological theory which predicts that strong, positive dependencies within a community should be rare, as highly interdependent ecosystems are likely to be unstable (Coyte et al., 2015) – a phenomenon Roche et al. refer to as an ‘ecological house of cards’.
It is unclear how many of these universal associations arise from direct ecological interactions between microbes, and how many arise from bacterial taxa simply preferring similar or different host environments. Roche et al. make a compelling case that both of these processes might be at play. They show that environmental similarity (e.g. diet) between hosts does not influence universality scores, supporting the idea that these associations reflect true ecological interactions. Furthermore, they show that associations with the highest universality score were positive relationships between closely related bacteria, suggesting that these interactions may be partly due to bacteria responding to a host’s internal state or environment in a similar way.
These findings suggest that while the composition of microbes in the gut can be highly individualised, the underlying ecology shaping this variation may be similar. This is good news for scientists developing therapies to modify the gut microbiome, such as probiotics, since it means that different microbiomes are likely to react predictably to interventions. Moreover, the ability to infer ecological phenomena from microbiome data has tremendous value for ecology as a whole.
The last century has seen a vast number of mathematical models for describing ecological theories, such as the theory of ecological succession (Cowles, 1899). However, testing these models in large-scale ecosystems is challenging as it usually requires data that has been collected over long periods of time, such as seeing a forest grow from its initial state to a stable climax. The findings of Roche et al. suggest that many hypotheses of ecological theory could instead be tested with data from microbiomes – which vary greatly across space, change quickly, but follow the same ecological principles as the large-scale ecological world we perceive. This new approach could bring scientists one step closer to answering many unexplored questions in ecology which, ultimately, govern our ability to survive on this planet.
References
-
Microbiome interactions shape host fitnessPNAS 115:E11951–E11960.https://doi.org/10.1073/pnas.1809349115
-
Strong pathogen competition in neonatal gut colonisationNature Communications 13:7417.https://doi.org/10.1038/s41467-022-35178-5
-
Nutrient cross-feeding in the microbial worldFrontiers in Microbiology 5:350.https://doi.org/10.3389/fmicb.2014.00350
-
Links between natural variation in the microbiome and host fitness in wild mammalsIntegrative and Comparative Biology 57:756–769.https://doi.org/10.1093/icb/icx104
Article and author information
Author details
Publication history
Copyright
© 2023, Santiago and Raulo
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 436
- views
-
- 23
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Ecology
Organisms require dietary macronutrients in specific ratios to maximize performance, and variation in macronutrient requirements plays a central role in niche determination. Although it is well recognized that development and body size can have strong and predictable effects on many aspects of organismal function, we lack a predictive understanding of ontogenetic or scaling effects on macronutrient intake. We determined protein and carbohydrate intake throughout development on lab populations of locusts and compared to late instars of field populations. Self-selected protein:carbohydrate targets declined dramatically through ontogeny, due primarily to declines in mass-specific protein consumption rates which were highly correlated with declines in specific growth rates. Lab results for protein consumption rates partly matched results from field-collected locusts. However, field locusts consumed nearly double the carbohydrate, likely due to higher activity and metabolic rates. Combining our results with the available data for animals, both across species and during ontogeny, protein consumption scaled predictably and hypometrically, demonstrating a new scaling rule key for understanding nutritional ecology.
-
- Ecology
Advances in tracking technologies have revealed the diverse migration patterns of birds, which are critical for range mapping and population estimation. Population trends are usually estimated in breeding ranges where birds remain stationary, but for species that breed in remote areas like the Arctic, these trends are often assessed in over-wintering ranges. Assessing population trends during the wintering season is challenging due to the extensive movements of birds in these ranges, which requires a deep understanding of the movement dynamics. However, these movements remain understudied, particularly in the mid-latitudes, where many Arctic breeders overwinter, increasing uncertainty in their ranges and numbers. Here, we show that the Arctic breeding raptor Rough-legged buzzard, which overwinters in the mid-latitudes, has a specific wintering strategy. After migrating ca. 1500 km from the Arctic to mid-latitudes, the birds continue to move throughout the entire over-wintering period, traveling another 1000 km southwest and then back northeast as the snowline advances. This continuous movement makes their wintering range dynamic throughout the season. In essence, this movement represents an extension of the quick migration process, albeit at a slower pace, and we have termed this migration pattern ‘foxtrot migration’, drawing an analogy to the alternating fast and slow movements of the foxtrot dance. These results highlight the potential errors in range mapping from single mid-winter surveys and emphasize the importance of this migration pattern in assessing the conservation status of bird species. Understanding this migration pattern could help to correctly estimate bird populations in over-wintering ranges, which is especially important for species that nest in hard-to-reach regions such as the Arctic.