Microbiome: Finding common connections
Living inside the gut of most mammals, including humans, is a unique cocktail of bacteria and other microbes collectively known as the gut microbiome. How individuals end up hosting such varied populations depends not only on the microbes they acquire from their environment, but also on how these organisms ecologically interact with one another inside the gut. For example, some microbes may be excluded from a host by a competitor (negative association; Mäklin et al., 2022), while others may be promoted to grow due to the mutual benefits provided by another microbe (positive association; Seth and Taga, 2014). Which bacteria end up in the microbiome has consequences for the health of the host (Suzuki, 2017). Therefore, understanding how bacteria in the gut interact, and whether these interactions are consistent across individuals, could help researchers develop better therapeutic drugs for recovering and maintaining a healthy gut microbiome.
Negative and positive interactions are typically measured by growing closely related groups of bacteria, known as taxa, in the presence or absence of other taxa (Foster and Bell, 2012; Gould et al., 2018). However, these kinds of experiments are practically impossible to carry out for communities as diverse as the gut microbiome. To overcome this, scientists study individual microbiomes to determine which bacterial taxa frequently occur together (suggesting they promote each other’s growth), and which rarely inhabit the same host (suggesting they are likely to be competitors). However, this approach does not reveal if interactions are consistent across different hosts (i.e. universal), or are unique to bacterial communities inside each individual.
Now, in eLife, Elizabeth Archie from the University of Notre Dame and colleagues – including Kimberley Roche as first author – report how different bacterial taxa fluctuate over time in the gut of wild baboons to determine if the interactions between them are universal (Roche et al., 2023). The team (who are based at various institutes in the United States and Germany) used data from a long-term study of wild baboons living in Amboseli, Kenya which had their microbiomes sampled hundreds of times between 2000 and 2013. Using a statistical model they had developed, Roche et al. tracked how the quantity of individual taxa rose and declined over time. These traces were then compared to determine which bacterial taxa fluctuated together (positive association) and which rose and fell in opposing directions (negative association).
Next, Roche et al. examined if the associations among bacteria were comparable across individuals. The strength and direction of the correlations (i.e. whether they were positive or negative) were remarkably consistent across the 56 baboons studied, suggesting that ecological interactions in the gut microbiome are mostly universal (Figure 1). Most of these associations were relatively weak and negative, suggesting that gut bacteria usually do not help one another grow, but rather compete with each other or thrive in different states, such as hosts with specific variations in their immune or endocrine systems. This result aligns well with ecological theory which predicts that strong, positive dependencies within a community should be rare, as highly interdependent ecosystems are likely to be unstable (Coyte et al., 2015) – a phenomenon Roche et al. refer to as an ‘ecological house of cards’.
It is unclear how many of these universal associations arise from direct ecological interactions between microbes, and how many arise from bacterial taxa simply preferring similar or different host environments. Roche et al. make a compelling case that both of these processes might be at play. They show that environmental similarity (e.g. diet) between hosts does not influence universality scores, supporting the idea that these associations reflect true ecological interactions. Furthermore, they show that associations with the highest universality score were positive relationships between closely related bacteria, suggesting that these interactions may be partly due to bacteria responding to a host’s internal state or environment in a similar way.
These findings suggest that while the composition of microbes in the gut can be highly individualised, the underlying ecology shaping this variation may be similar. This is good news for scientists developing therapies to modify the gut microbiome, such as probiotics, since it means that different microbiomes are likely to react predictably to interventions. Moreover, the ability to infer ecological phenomena from microbiome data has tremendous value for ecology as a whole.
The last century has seen a vast number of mathematical models for describing ecological theories, such as the theory of ecological succession (Cowles, 1899). However, testing these models in large-scale ecosystems is challenging as it usually requires data that has been collected over long periods of time, such as seeing a forest grow from its initial state to a stable climax. The findings of Roche et al. suggest that many hypotheses of ecological theory could instead be tested with data from microbiomes – which vary greatly across space, change quickly, but follow the same ecological principles as the large-scale ecological world we perceive. This new approach could bring scientists one step closer to answering many unexplored questions in ecology which, ultimately, govern our ability to survive on this planet.
References
-
Microbiome interactions shape host fitnessPNAS 115:E11951–E11960.https://doi.org/10.1073/pnas.1809349115
-
Strong pathogen competition in neonatal gut colonisationNature Communications 13:7417.https://doi.org/10.1038/s41467-022-35178-5
-
Nutrient cross-feeding in the microbial worldFrontiers in Microbiology 5:350.https://doi.org/10.3389/fmicb.2014.00350
-
Links between natural variation in the microbiome and host fitness in wild mammalsIntegrative and Comparative Biology 57:756–769.https://doi.org/10.1093/icb/icx104
Article and author information
Author details
Publication history
Copyright
© 2023, Santiago and Raulo
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 445
- views
-
- 23
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.
-
- Ecology
- Evolutionary Biology
Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.