53 results found
    1. Developmental Biology

    Ripply2 recruits proteasome complex for Tbx6 degradation to define segment border during murine somitogenesis

    Wei Zhao et al.
    Inducing presomitic mesoderm (PSM)-fated ES cells clarified that Ripply2 directly interacts with Tbx6 and degrades Tbx6 in proteasome-ubiquitin pathway by recruiting the 26S proteasome, which is a PSM-specific event to define the segment border during mouse somitogenesis.
    1. Developmental Biology

    Fgf4 maintains Hes7 levels critical for normal somite segmentation clock function

    Matthew J Anderson et al.
    Quantification of fluorescently labeled mRNAs reveals that Fgf4 regulates Notch oscillations in the segmentation clock that controls somitogenesis.
    1. Developmental Biology

    Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock

    Laura Lleras Forero et al.
    In contrast to amniotes, zebrafish (ray-finned fish, teleost) centra are formed from specialised notochord sheath cells, and the segmental patterning of these cells is independent of the segmentation clock.
    1. Computational and Systems Biology
    2. Developmental Biology

    A balance of positive and negative regulators determines the pace of the segmentation clock

    Guy Wiedermann et al.
    Computational modelling together with experimental manipulation indicate that the stability and turnover of activated Notch is inextricably linked to the regulation of the pace of segmentation clock gene expression in the presomitic mesoderm.
    1. Developmental Biology

    Geometric models for robust encoding of dynamical information into embryonic patterns

    Laurent Jutras-Dubé et al.
    Propagation, speed and shapes of genetic waves of expression during development can be modeled by a simple interplay between two transcriptional modules (dynamic/static), which explains robustness and precision of patterning.
    1. Computational and Systems Biology
    2. Physics of Living Systems

    Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock

    Alexis B Webb et al.
    Time-lapse recording and theoretical analysis of individual cells isolated from the zebrafish segmentation clock reveal that they behave as self-sustained, autonomous oscillators with distinctive noisy dynamics.
    1. Developmental Biology

    Regulation of posterior body and epidermal morphogenesis in zebrafish by localized Yap1 and Wwtr1

    David Kimelman et al.
    Analysis of a double mutant in the Hippo pathway transcription factors Yap1 and Wwtr1 reveals novel roles for these factors in posterior body formation and epidermal morphogenesis in the vertebrate embryo.
    1. Developmental Biology

    Hox genes control vertebrate body elongation by collinear Wnt repression

    Nicolas Denans et al.
    The collinear activation of a subset of posterior Hox genes is responsible for establishing a Wnt/T activity gradient that is required to generate the complete body axis, and hence the full set of segments within a vertebrate embryo.
    1. Developmental Biology

    The ectodomains determine ligand function in vivo and selectivity of DLL1 and DLL4 toward NOTCH1 and NOTCH2 in vitro

    Lena Tveriakhina et al.
    Regions outside the major receptor binding interface of DLL1 and DLL4 contribute to context-dependent divergence of ligand function in vivo and differential Notch1 and Notch2 activation in vitro.
    1. Cell Biology

    The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes

    Maria Benito-Jardón et al.
    The fibronectin synergy site is only required in vivo when forces exceed or αvβ3 integrin levels fall below certain thresholds.

Refine your results by:

Type
Research categories