Abstract

TRIM5 proteins are restriction factors that block retroviral infections by binding viral capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal domains on TRIM5α (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate oligomerization and create avidity effects. To characterize how TRIM5 proteins recognize viral capsids, we developed methods for isolating native recombinant TRIM5 proteins and purifying stable HIV-1 capsids. Biochemical and EM analyses revealed that TRIM5 proteins assembled into hexagonal nets, both alone and on capsid surfaces. These nets comprised open hexameric rings, with the SPRY domains centered on the edges and the B-box and RING domains at the vertices. Thus, the principles of hexagonal TRIM5 assembly and capsid pattern recognition are conserved across primates, allowing TRIM5 assemblies to maintain the conformational plasticity necessary to recognize divergent and pleomorphic retroviral capsids.

Article and author information

Author details

  1. Yen-Li Li

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  2. Viswanathan Chandrasekaran

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  3. Stephen D Carter

    Division of Biology, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  4. Cora L Woodward

    Division of Biology, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  5. Devin E Christensen

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  6. Kelly A Dryden

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  7. Owen Pornillos

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  8. Mark Yeager

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  9. Barbie K Ganser-Pornillos

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  10. Grant J Jensen

    Division of Biology, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  11. Wesley I Sundquist

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    For correspondence
    wes@biochem.utah.edu
    Competing interests
    Wesley I Sundquist, Reviewing editor, eLife.

Copyright

© 2016, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,998
    views
  • 974
    downloads
  • 91
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yen-Li Li
  2. Viswanathan Chandrasekaran
  3. Stephen D Carter
  4. Cora L Woodward
  5. Devin E Christensen
  6. Kelly A Dryden
  7. Owen Pornillos
  8. Mark Yeager
  9. Barbie K Ganser-Pornillos
  10. Grant J Jensen
  11. Wesley I Sundquist
(2016)
Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids
eLife 5:e16269.
https://doi.org/10.7554/eLife.16269

Share this article

https://doi.org/10.7554/eLife.16269

Further reading

    1. Structural Biology and Molecular Biophysics
    2. Microbiology and Infectious Disease
    Jeremy Luban
    Insight

    Structural studies reveal how an antiviral factor forms a molecular net to restrict retroviruses including HIV-1.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Patsy R Tomlinson, Rachel G Knox ... Robert K Semple
    Research Article

    PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.