Genetic Screen: Hearing lessons from flies
The myosin motor proteins play a variety of roles inside cells, such as transporting cargo around the cell and maintaining the structure of the cell's internal skeleton. Myosins also make important contributions to our sense of hearing, which can be revealed by studying conditions such as Usher syndrome (a severe sensory disorder that causes congenital deafness and late-onset blindness). In humans and other mammals, two myosin proteins called myosin VIIa and myosin IIa have been linked to deafness, but we do not understand how these proteins interact.
Now, in eLife, Andrew Groves, Hugo Bellen and co-workers – including Tongchao Li of Baylor College of Medicine as first author – report evidence of a conserved molecular machinery in the auditory organs of mammals and the fruit fly Drosophila (Li et al., 2016). Furthermore, the screen identified an enzyme called Ubr3 that regulates the interaction of the two myosins in Drosophila.
Auditory organs convert the mechanical energy in sound waves into electrical signals that can be interpreted by the brain. In mammals, this conversion happens in "hair cells" in the inner ear. These cells have thin protrusions called stereocilia on their surface, and the tips of these stereocilia contain ion channels called MET channels (which is short for mechanoelectrical transduction channels).
Five proteins associated with the most serious form of Usher syndrome – known as USH1 – are key components of the molecular apparatus that enables the MET channels to open and close in response to mechanical force. The USH1 proteins are restricted to the tips of the stereocilia, where they form a complex (Figure 1; Prosser et al., 2008; Weil et al., 1995). Two of the USH1 proteins work together to join the tip of each stereocilium to its next-highest neighbor, forming bundles of stereocilia (Kazmierczak et al., 2007). Deflecting these bundles stretches the stereocilial bundles, which opens the MET channels and triggers the hair cell to produce an electrical signal (Pan and Zhang, 2012). Thus, the USH1 protein complex is essential for maintaining the structural integrity of stereocilia.
Flies do not have ears as such, but they are still able to detect sounds through their antennae. Despite the auditory organs of flies and mammals having different structures, they work in a similar way. In Drosophila, structures called scolopidia, which are found suspended in the second segment of the antenna, sense sound vibrations relayed from the third segment (Figure 1). Cells called cap cells and scolopale cells anchor the tip of the scolopidia to the joint between the second and third segments. The scolopale cells also secrete a protein to form the dendritic cap that connects a sensory neuron with the joint. This structure allows the mechanical forces produced by the sound waves to be transmitted to the neuron, activating the MET channels and causing the sensory neuron to produce an electrical signal.
Inactivating the gene that produces myosin VIIa causes the scolopidia to detach from the joint and causes the protein that forms the dendritic cap to be distributed abnormally (Todi et al., 2005; Todi et al., 2008). Now, Li at al. – who are based at Baylor, the Texas Children's Hospital, the University of Iowa and the University of Toronto – show that inactivating the gene that encodes the enzyme Ubr3 has the same effect.
Ubr3 is a type of E3 ubiquitin ligase. These enzymes regulate a number of cell processes by helping to join small proteins called ubiquitins onto other proteins. Using a forward genetic screen, Li et al. found that Ubr3 is enriched in the tips of scolopidia, particularly at the ends of the sensory neurons and in the scolopale cells closest to the joint between the second and third segments.
Li et al. show that Ubr3 and another E3 ubiquitin ligase called Cul1 negatively regulates the addition of a single ubiquitin to myosin II. This means that the loss of Ubr3 increases the rate of the “mono-ubiquitination” of myosin II, which leads to stronger interactions between myosin II and myosin VIIa. Importantly, the mono-ubiquitination of myosin II and the interaction between myosin II and myosin VIIa helps to ensure that they (and also the fly equivalents of Usher proteins) localize correctly to the scolopidial tip. Thus, Ubr3 is crucial for maintaining the structure and function of scolopidia.
Overall, the results presented by Li et al. argue that a conserved model underlies hearing in both Drosophila and mammals. In this model, the negative regulation of mono-ubiquitination of myosin IIa (or myosin II in the case of Drosophila) by Ubr3 promotes the formation of the myosin IIa-myosin VIIa complex (or the myosin II-myosin VIIa complex in Drosophila). The myosin complex then transports the USH1 protein complex to the tips of the stereocilia (or scolopidia) to establish the sound-sensing structure that enables the MET channels to work.
Using the power of fly genetics, Li et al. have identified new components involved in the development and function of auditory organs, and linked them to genes known to play a role in human deafness. Undoubtedly, future studies of these deafness-related genes in the Drosophila auditory organ will bring more insights into the interplay among the molecules, including the USH1 proteins, that are important for hearing.
References
-
The Drosophila auditory systemWiley Interdisciplinary Reviews: Developmental Biology 3:179–191.https://doi.org/10.1002/wdev.128
-
Mosaic complementation demonstrates a regulatory role for myosin VIIa in actin dynamics of stereociliaMolecular and Cellular Biology 28:1702–1712.https://doi.org/10.1128/MCB.01282-07
-
How the genetics of deafness illuminates auditory physiologyAnnual Review of Physiology 73:311–334.https://doi.org/10.1146/annurev-physiol-012110-142228
Article and author information
Author details
Publication history
Copyright
© 2016, Lee et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,047
- views
-
- 126
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.
-
- Cell Biology
- Developmental Biology
In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.