Cytokines: A gut response

Unexpected findings from the immune system of sea urchin larvae potentially provide insights into immune signaling in ancestral lifeforms.
  1. Matthew L Nicotra  Is a corresponding author
  1. University of Pittsburgh, United States

In 1882, Elie Metchnikoff peered through a microscope at a starfish larva and observed migrating cells engulf a splinter. He named these cells ‘phagocytes’, and they inspired the idea that certain cells defend the organism by eating foreign invaders (Metchnikoff, 1893). Metchnikoff’s phagocytosis theory described a new dimension of immunity and earned him a Nobel prize in 1908 (Tauber, 2003).

Starfish are echinoderms – a set of marine animals that also includes sea urchins. Nearly 100 years after Metchnikoff identified phagocytes, a team of scientists sequenced the urchin genome and made a startling discovery: several families of innate immune molecules had more than 200 members, which was much greater than anything encountered in previously sequenced animal genomes (Sea Urchin Genome Sequencing Consortium et al., 2006). As the genomes of additional species were sequenced, a picture emerged indicating that innate immune systems of echinoderms and other invertebrates rely on a genomic complexity not seen in mammals.

Encoded in the genome of many animals are molecules called cytokines that play important signaling roles in the immune system. Now, in eLife, Jonathan Rast, Katherine Buckley and co-workers at the University of Toronto and Sunnybrook Research Institute – including Buckley and Eric Ho as joint first authors – report unexpected results regarding a cytokine called IL-17 in echinoderm larvae (Buckley et al., 2017).

Immunologists focus a lot of attention on how cytokines control immune cells, but they (the cytokines, not the immunologists) can also work on other cell types. For example, in mice and humans, IL-17 acts almost entirely on the epithelial cells that line body cavities and the mesenchymal cells that make up connective tissue. In response to IL-17, the cells trigger inflammation – an important part of the early immune response (Amatya et al., 2017).

While Buckley et al. did not set out to study IL-17, they were interested in how urchins deal with bacteria in their guts. Urchin larvae feed by filtering microbe-rich seawater, and should therefore have robust gut immune responses. The larvae are transparent, which allowed Buckley et al. to watch as the same cell types that enthralled Metchnikoff engulfed bacteria in the gut. Yet even before the infection was visible, immune cells migrated to the gut and the gut epithelium thickened and closed off. This indicated an early, systemic immune response. Further investigation revealed that the urchin versions of IL-17 were some of the most highly expressed genes immediately after an infection. This raised the question of whether IL-17 has an ancient role as a regulator of gut microbial responses.

For most cytokines it would be difficult, if not impossible, to find the answer. Cytokines evolve so quickly that it is hard to identify which are homologs (i.e. which genes share a common ancestor). IL-17, however, has several highly conserved motifs that allowed Buckley et al. to identify 35 members of the IL-17 family in urchins. By contrast, mice and humans only have six members (Amatya et al., 2017). These 35 cytokines cluster into ten subgroups, dubbed SpIL17-1 through SpIL17-10. Remarkably, the subgroups appear in four other echinoderm species that span over 260 million years of evolution. This conservation suggests each family has a distinct and essential role. Unfortunately, more than 500 million years of evolution separates echinoderms and mammals, which prevents us from establishing the evolutionary relationships between individual urchin and mammalian genes, even for IL-17.

Buckley et al. next assembled a detailed picture of IL-17 expression in both adult urchins and larvae. All IL-17s were completely inactive in healthy larvae, but four hours after an infection the activity of two families – SpIL17-1 and SpIL17-4 – dramatically increased. Subsequently, several other immune genes were activated, including two hallmarks of inflammation. A series of cellular localization experiments further demonstrated that gut epithelial cells – and not immune cells – express IL-17 cytokines. Buckley et al. then combined publicly available data with their own experiments to show that in adult urchins, SpIL17-1 and SpIL17-4 are inactive during bacterial infections. Instead, a different family (SpIL17-9) increases its activity, which is followed by the expression of several echinoderm-specific defense molecules.

With 35 IL-17-like cytokines in the genome, one might expect a similar diversity of IL-17 receptors. However, Buckley et al. found only two. Blocking the translation of one of the receptor types was lethal for the larvae. Blocking the other receptor – termed IL-17R1 – reduced the expression of several (but not all) immune response genes, and did not prevent immune cell migration. Other pathways of immune activation must therefore exist.

These findings raise a number of questions. Why do echinoderms have ten IL-17 families yet apparently only two receptors? Do additional IL-17 receptors that lack homology to their vertebrate counterparts exist? How does the gut epithelium sense bacteria to trigger an immune response? One can expect that recent demonstrations of CRISPR/Cas9 mediated genome editing in urchins will help researchers to seek answers to these questions (Lin and Su, 2016).

More fundamentally, does the production of IL-17 by epithelial cells represent an ancestral immune state in animals? The answer could be yes. Nearly everything we know about mammalian IL-17 signaling comes from studies of a subfamily called IL-17A, which is secreted by immune cells, but several other IL-17s are produced by gut epithelial cells (Song et al., 2011).

In summary, these results reinforce the idea that we should study host immune defenses across the animal tree in order to discover general properties of immune systems (Litman and Cooper, 2007). Buckley et al. have achieved this by peering into an echinoderm. Metchnikoff would approve.


  1. Book
    1. Metchnikoff E
    Lectures on the Comparative Pathology of Inflammation
    London: Kegan Paul, Trench, Trubner, and Co, Ltd.
    1. Sea Urchin Genome Sequencing Consortium
    2. Sodergren E
    3. Weinstock GM
    4. Davidson EH
    5. Cameron RA
    6. Gibbs RA
    7. Angerer RC
    8. Angerer LM
    9. Arnone MI
    10. Burgess DR
    11. Burke RD
    12. Coffman JA
    13. Dean M
    14. Elphick MR
    15. Ettensohn CA
    16. Foltz KR
    17. Hamdoun A
    18. Hynes RO
    19. Klein WH
    20. Marzluff W
    21. McClay DR
    22. Morris RL
    23. Mushegian A
    24. Rast JP
    25. Smith LC
    26. Thorndyke MC
    27. Vacquier VD
    28. Wessel GM
    29. Wray G
    30. Zhang L
    31. Elsik CG
    32. Ermolaeva O
    33. Hlavina W
    34. Hofmann G
    35. Kitts P
    36. Landrum MJ
    37. Mackey AJ
    38. Maglott D
    39. Panopoulou G
    40. Poustka AJ
    41. Pruitt K
    42. Sapojnikov V
    43. Song X
    44. Souvorov A
    45. Solovyev V
    46. Wei Z
    47. Whittaker CA
    48. Worley K
    49. Durbin KJ
    50. Shen Y
    51. Fedrigo O
    52. Garfield D
    53. Haygood R
    54. Primus A
    55. Satija R
    56. Severson T
    57. Gonzalez-Garay ML
    58. Jackson AR
    59. Milosavljevic A
    60. Tong M
    61. Killian CE
    62. Livingston BT
    63. Wilt FH
    64. Adams N
    65. Bellé R
    66. Carbonneau S
    67. Cheung R
    68. Cormier P
    69. Cosson B
    70. Croce J
    71. Fernandez-Guerra A
    72. Genevière AM
    73. Goel M
    74. Kelkar H
    75. Morales J
    76. Mulner-Lorillon O
    77. Robertson AJ
    78. Goldstone JV
    79. Cole B
    80. Epel D
    81. Gold B
    82. Hahn ME
    83. Howard-Ashby M
    84. Scally M
    85. Stegeman JJ
    86. Allgood EL
    87. Cool J
    88. Judkins KM
    89. McCafferty SS
    90. Musante AM
    91. Obar RA
    92. Rawson AP
    93. Rossetti BJ
    94. Gibbons IR
    95. Hoffman MP
    96. Leone A
    97. Istrail S
    98. Materna SC
    99. Samanta MP
    100. Stolc V
    101. Tongprasit W
    102. Tu Q
    103. Bergeron KF
    104. Brandhorst BP
    105. Whittle J
    106. Berney K
    107. Bottjer DJ
    108. Calestani C
    109. Peterson K
    110. Chow E
    111. Yuan QA
    112. Elhaik E
    113. Graur D
    114. Reese JT
    115. Bosdet I
    116. Heesun S
    117. Marra MA
    118. Schein J
    119. Anderson MK
    120. Brockton V
    121. Buckley KM
    122. Cohen AH
    123. Fugmann SD
    124. Hibino T
    125. Loza-Coll M
    126. Majeske AJ
    127. Messier C
    128. Nair SV
    129. Pancer Z
    130. Terwilliger DP
    131. Agca C
    132. Arboleda E
    133. Chen N
    134. Churcher AM
    135. Hallböök F
    136. Humphrey GW
    137. Idris MM
    138. Kiyama T
    139. Liang S
    140. Mellott D
    141. Mu X
    142. Murray G
    143. Olinski RP
    144. Raible F
    145. Rowe M
    146. Taylor JS
    147. Tessmar-Raible K
    148. Wang D
    149. Wilson KH
    150. Yaguchi S
    151. Gaasterland T
    152. Galindo BE
    153. Gunaratne HJ
    154. Juliano C
    155. Kinukawa M
    156. Moy GW
    157. Neill AT
    158. Nomura M
    159. Raisch M
    160. Reade A
    161. Roux MM
    162. Song JL
    163. Su YH
    164. Townley IK
    165. Voronina E
    166. Wong JL
    167. Amore G
    168. Branno M
    169. Brown ER
    170. Cavalieri V
    171. Duboc V
    172. Duloquin L
    173. Flytzanis C
    174. Gache C
    175. Lapraz F
    176. Lepage T
    177. Locascio A
    178. Martinez P
    179. Matassi G
    180. Matranga V
    181. Range R
    182. Rizzo F
    183. Röttinger E
    184. Beane W
    185. Bradham C
    186. Byrum C
    187. Glenn T
    188. Hussain S
    189. Manning G
    190. Miranda E
    191. Thomason R
    192. Walton K
    193. Wikramanayke A
    194. Wu SY
    195. Xu R
    196. Brown CT
    197. Chen L
    198. Gray RF
    199. Lee PY
    200. Nam J
    201. Oliveri P
    202. Smith J
    203. Muzny D
    204. Bell S
    205. Chacko J
    206. Cree A
    207. Curry S
    208. Davis C
    209. Dinh H
    210. Dugan-Rocha S
    211. Fowler J
    212. Gill R
    213. Hamilton C
    214. Hernandez J
    215. Hines S
    216. Hume J
    217. Jackson L
    218. Jolivet A
    219. Kovar C
    220. Lee S
    221. Lewis L
    222. Miner G
    223. Morgan M
    224. Nazareth LV
    225. Okwuonu G
    226. Parker D
    227. Pu LL
    228. Thorn R
    229. Wright R
    (2006) The genome of the sea urchin Strongylocentrotus purpuratus
    Science 314:941–952.

Article and author information

Author details

  1. Matthew L Nicotra

    Thomas E. Starzl Transplant Institute and the Departments of Surgery and Immunology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    Competing interests
    The author declares that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5361-8398

Publication history

  1. Version of Record published: June 2, 2017 (version 1)


© 2017, Nicotra

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 1,553
    Page views
  • 107
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew L Nicotra
Cytokines: A gut response
eLife 6:e28152.

Further reading

  1. The sea urchin may be a good model for understanding how immune responses work in humans and other vertebrates.

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.