PUMILIO hyperactivity drives premature aging of Norad-deficient mice
Abstract
Although numerous long noncoding RNAs (lncRNAs) have been identified, our understanding of their roles in mammalian physiology remains limited. Here we investigated the physiologic function of the conserved lncRNA Norad in vivo. Deletion of Norad in mice results in genomic instability and mitochondrial dysfunction, leading to a dramatic multi-system degenerative phenotype resembling premature aging. Loss of tissue homeostasis in Norad-deficient animals is attributable to augmented activity of PUMILIO proteins, which act as post-transcriptional repressors of target mRNAs to which they bind. Norad is the preferred RNA target of PUMILIO2 (PUM2) in mouse tissues and, upon loss of Norad, PUM2 hyperactively represses key genes required for mitosis and mitochondrial function. Accordingly, enforced Pum2 expression fully phenocopies Norad deletion, resulting in rapid-onset aging-associated phenotypes. These findings provide new insights and open new lines of investigation into the roles of noncoding RNAs and RNA binding proteins in normal physiology and aging.
Data availability
RNA-seq and eCLIP data has been deposited in the Gene Expression Omnibus (GEO) at NCBI (Accession numbers GSE121684, GSE121688, and GSE125539).
-
Identification of RNAs bound to PUM2 in Norad+/+ and Norad-/- brains [CLIP-seq]NCBI Gene Expression Omnibus, GSE121684.
-
Gene expression profiles in Norad+/+ and Norad-/- brains and spleens [RNA-seq]NCBI Gene Expression Omnibus, GSE121688.
-
Gene expression profiles in double transgenic (DT, Pum2;rtTA3) and control (CTR, Pum2 and wild-type) spleensNCBI Gene Expression Omnibus, GSE125539.
-
Gene expression profiles in NORAD knockout and PUMILIO overexpressing cellsNCBI Gene Expression Omnibus, GSE75440.
Article and author information
Author details
Funding
Howard Hughes Medical Institute
- Hongtao Yu
- Joshua T Mendell
National Institutes of Health (R35CA197311)
- Joshua T Mendell
Cancer Prevention and Research Institute of Texas (RP160249)
- Yang Xie
- Joshua T Mendell
Welch Foundation (I-1961-20180324)
- Joshua T Mendell
German National Academy of Sciences Leopoldina (LPDS 2014-12)
- Florian Kopp
National Institutes of Health (P30CA142543)
- Joshua T Mendell
National Institutes of Health (P50CA196516)
- Joshua T Mendell
Cancer Prevention and Research Institute of Texas (RP150596)
- Yang Xie
- Joshua T Mendell
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were handled according to approved institutional animal care and use committee (IACUC) protocols of The University of Texas Southwestern Medical Center (Animal Protocol Number 2017-102001) and The Ohio State University, Nationwide Children's Hospital (Animal Protocol Number AR12-00014).
Copyright
© 2019, Kopp et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 7,231
- views
-
- 1,119
- downloads
-
- 76
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
- Genetics and Genomics
Deleting a long noncoding RNA drives premature aging in mice.
-
- Chromosomes and Gene Expression
- Evolutionary Biology
Repression of retrotransposition is crucial for the successful fitness of a mammalian organism. The domesticated transposon protein L1TD1, derived from LINE-1 (L1) ORF1p, is an RNA-binding protein that is expressed only in some cancers and early embryogenesis. In human embryonic stem cells, it is found to be essential for maintaining pluripotency. In cancer, L1TD1 expression is highly correlative with malignancy progression and as such considered a potential prognostic factor for tumors. However, its molecular role in cancer remains largely unknown. Our findings reveal that DNA hypomethylation induces the expression of L1TD1 in HAP1 human tumor cells. L1TD1 depletion significantly modulates both the proteome and transcriptome and thereby reduces cell viability. Notably, L1TD1 associates with L1 transcripts and interacts with L1 ORF1p protein, thereby facilitating L1 retrotransposition. Our data suggest that L1TD1 collaborates with its ancestral L1 ORF1p as an RNA chaperone, ensuring the efficient retrotransposition of L1 retrotransposons, rather than directly impacting the abundance of L1TD1 targets. In this way, L1TD1 might have an important role not only during early development but also in tumorigenesis.