1. Developmental Biology
  2. Neuroscience
Download icon

Learning steers the ontogeny of an efficient hunting sequence in zebrafish larvae

  1. Konstantinos Lagogiannis  Is a corresponding author
  2. Giovanni Diana
  3. Martin P Meyer  Is a corresponding author
  1. King's College London, United Kingdom
Research Article
  • Cited 0
  • Views 386
  • Annotations
Cite this article as: eLife 2020;9:e55119 doi: 10.7554/eLife.55119

Abstract

Goal-directed behaviours may be poorly coordinated in young animals but, with age and experience, behaviour progressively adapts to efficiently exploit the animal's ecological niche. How experience impinges on the developing neural circuits of behaviour is an open question. We have conducted a detailed study of the effects of experience on the ontogeny of hunting behaviour in larval zebrafish. We report that larvae with prior experience of live prey consume considerably more prey than naive larvae. This is mainly due to increased capture success and a modest increase in hunt rate. We demonstrate that the initial turn to prey and the final capture manoeuvre of the hunting sequence were jointly modified by experience and that modification of these components predicted capture success. Our findings establish an ethologically relevant paradigm in zebrafish for studying how the brain is shaped by experience to drive the ontogeny of efficient behaviour.

Article and author information

Author details

  1. Konstantinos Lagogiannis

    Developmental Neurobiology, King's College London, London, United Kingdom
    For correspondence
    costaslag@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9349-801X
  2. Giovanni Diana

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7497-5271
  3. Martin P Meyer

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    For correspondence
    martin.meyer@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8337-630X

Funding

Wellcome (204788/Z/16/Z)

  • Konstantinos Lagogiannis
  • Giovanni Diana
  • Martin P Meyer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This work was approved by the local Animal Care and Use Committee (King's College London) and was performed in accordance with the Animals (Scientific Procedures) Act, 1986, under license from the United Kingdom Home Office Licence number P9090AEFD. All primary data included in the manuscript came from the use of zebrafish larvae. All procedures were non-invasive and classified as mild according to the Animals Act 1986 and as defined by the United Kingdom Home Office, in order to minimize animal suffering. At the end of regulated procedures, animals were culled using a schedule 1 method (terminal dose of MS222).

Reviewing Editor

  1. Yuichi Iino, University of Tokyo, Japan

Publication history

  1. Received: January 13, 2020
  2. Accepted: August 7, 2020
  3. Accepted Manuscript published: August 10, 2020 (version 1)

Copyright

© 2020, Lagogiannis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 386
    Page views
  • 81
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Jennifer D Cohen et al.
    Research Article

    Biological tubes must develop and maintain their proper diameter in order to transport materials efficiently. These tubes are molded and protected in part by apical extracellular matrices (aECMs) that line their lumens. Despite their importance, aECMs are difficult to image in vivo and therefore poorly understood. The C. elegans vulva has been a paradigm for understanding many aspects of organogenesis. Here we describe the vulva luminal matrix, which contains chondroitin proteoglycans, Zona Pellucida (ZP) domain proteins, and other glycoproteins and lipid transporters related to those in mammals. Confocal and transmission electron microscopy revealed, with unprecedented detail, a complex and dynamic aECM. Different matrix factors assemble on the apical surfaces of each vulva cell type, with clear distinctions seen between Ras-dependent (1˚) and Notch-dependent (2˚) cell types. Genetic perturbations suggest that chondroitin and other aECM factors together generate a structured scaffold that both expands and constricts lumen shape.

    1. Developmental Biology
    2. Genetics and Genomics
    Meltem Weger et al.
    Research Article

    The glucose-sensing Mondo pathway regulates expression of metabolic genes in mammals. Here, we characterized its function in the zebrafish and revealed an unexpected role of this pathway in vertebrate embryonic development. We showed that knockdown of mondoa impaired the early morphogenetic movement of epiboly in zebrafish embryos and caused microtubule defects. Expression of genes in the terpenoid backbone and sterol biosynthesis pathways upstream of pregnenolone synthesis was coordinately downregulated in these embryos, including the most downregulated gene nsdhl. Loss of Nsdhl function likewise impaired epiboly, similar to MondoA loss of function. Both epiboly and microtubule defects were partially restored by pregnenolone treatment. Maternal-zygotic mutants of mondoa showed perturbed epiboly with low penetrance and compensatory changes in the expression of terpenoid/sterol/steroid metabolism genes. Collectively, our results show a novel role for MondoA in the regulation of early vertebrate development, connecting glucose, cholesterol and steroid hormone metabolism with early embryonic cell movements.