1. Cell Biology
  2. Plant Biology
Download icon

A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress

  1. Madlen Stephani
  2. Lorenzo Picchianti
  3. Alexander Gajic
  4. Rebecca Beveridge
  5. Emilio Skarwan
  6. Victor Sanchez de Medina Hernandez
  7. Azadeh Mohseni
  8. Marion Clavel
  9. Yonglun Zeng
  10. Christin Naumann
  11. Mateusz Matuszkiewicz
  12. Eleonora Turco
  13. Christian Loefke
  14. Baiying Li
  15. Gerhard Dürnberger
  16. Michael Schutzbier
  17. Hsiao Tieh Chen
  18. Alibek Abdrakhmanov
  19. Adriana Savova
  20. Khong-Sam Chia
  21. Armin Djamei
  22. Irene Schaffner
  23. Steffen Abel
  24. Liwen Jiang
  25. Karl Mechtler
  26. Fumiyo Ikeda
  27. Sascha Martens
  28. Tim Clausen  Is a corresponding author
  29. Yasin Dagdas  Is a corresponding author
  1. Gregor Mendel Institute, Vienna Biocenter, Austria
  2. Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Austria
  3. The Chinese University of Hong Kong, Hong Kong
  4. Leibniz Institute of Plant Biochemistry and ScienceCampus Halle - Plant-Based Bioeconomy, Germany
  5. University of Vienna, Austria
  6. Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), Austria
  7. IPK Gatersleben, Germany
  8. University of Natural Resources and Life Sciences, Austria
  9. Leibniz Institute of Plant Biochemistry, Germany
  10. the Chinese University of Hong Kong, Hong Kong
  11. Research Institute of Molecular Pathology, Austria
  12. Medical Institute of Bioregulation (MIB), Kyushu University, Japan
Research Article
  • Cited 13
  • Views 4,020
  • Annotations
Cite this article as: eLife 2020;9:e58396 doi: 10.7554/eLife.58396

Abstract

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the ER. Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.

Article and author information

Author details

  1. Madlen Stephani

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  2. Lorenzo Picchianti

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  3. Alexander Gajic

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  4. Rebecca Beveridge

    Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
    Competing interests
    No competing interests declared.
  5. Emilio Skarwan

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  6. Victor Sanchez de Medina Hernandez

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  7. Azadeh Mohseni

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  8. Marion Clavel

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  9. Yonglun Zeng

    School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  10. Christin Naumann

    Independent Junior Research Group Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry and ScienceCampus Halle - Plant-Based Bioeconomy, Halle, Germany
    Competing interests
    No competing interests declared.
  11. Mateusz Matuszkiewicz

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  12. Eleonora Turco

    Max F Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  13. Christian Loefke

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  14. Baiying Li

    School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  15. Gerhard Dürnberger

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  16. Michael Schutzbier

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  17. Hsiao Tieh Chen

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  18. Alibek Abdrakhmanov

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  19. Adriana Savova

    Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
    Competing interests
    No competing interests declared.
  20. Khong-Sam Chia

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  21. Armin Djamei

    Breeding Research, IPK Gatersleben, Stadt Seeland, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8087-9566
  22. Irene Schaffner

    BOKU Core Facility Biomolecular & Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  23. Steffen Abel

    Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
    Competing interests
    No competing interests declared.
  24. Liwen Jiang

    School of Life Sciences, the Chinese University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  25. Karl Mechtler

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    No competing interests declared.
  26. Fumiyo Ikeda

    Department of Molecular and Cellular Biology, Medical Institute of Bioregulation (MIB), Kyushu University, Fukuoka, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0407-2768
  27. Sascha Martens

    Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
    Competing interests
    Sascha Martens, is member of the scientific advisory board of Casma Therapeutics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3786-8199
  28. Tim Clausen

    Research Institute of Molecular Pathology, Vienna, Austria
    For correspondence
    tim.clausen@imp.ac.at
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1582-6924
  29. Yasin Dagdas

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    For correspondence
    yasin.dagdas@gmi.oeaw.ac.at
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9502-355X

Funding

Vienna Science and Technology Fund (LS17-047)

  • Madlen Stephani
  • Lorenzo Picchianti
  • Tim Clausen
  • Yasin Dagdas

Austrian Science Fund (P32355)

  • Yasin Dagdas

Austrian Science Fund (P30401-B21)

  • Sascha Martens

Austrian Science Fund (I3033-B22)

  • Armin Djamei

Austrian Science Fund (Unidocs fellowship)

  • Adriana Savova

Austrian Academy of Sciences

  • Alexander Gajic
  • Emilio Skarwan
  • Victor Sanchez de Medina Hernandez
  • Azadeh Mohseni
  • Marion Clavel
  • Christian Loefke
  • Alibek Abdrakhmanov
  • Yasin Dagdas

Horizon 2020 Framework Programme (No.646653)

  • Sascha Martens

The Financial Supports for Young Scientists International Research Scholarship Fund (BWM 315/2018)

  • Mateusz Matuszkiewicz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Rape, University of California, Berkeley, United States

Publication history

  1. Received: April 29, 2020
  2. Accepted: August 26, 2020
  3. Accepted Manuscript published: August 27, 2020 (version 1)
  4. Accepted Manuscript updated: September 10, 2020 (version 2)
  5. Version of Record published: September 24, 2020 (version 3)
  6. Version of Record updated: September 25, 2020 (version 4)

Copyright

© 2020, Stephani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,020
    Page views
  • 845
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Haibin Yang et al.
    Research Article Updated

    Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the leucine-rich-repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Qiuying Liu et al.
    Research Article Updated

    The regulation of stem cell fate is poorly understood. Genetic studies in Caenorhabditis elegans lead to the hypothesis that a conserved cytoplasmic double-negative feedback loop consisting of the RNA-binding protein Trim71 and the let-7 microRNA controls the pluripotency and differentiation of stem cells. Although let-7-microRNA-mediated inhibition of Trim71 promotes differentiation, whether and how Trim71 regulates pluripotency and inhibits the let-7 microRNA are still unknown. Here, we show that Trim71 represses Ago2 mRNA translation in mouse embryonic stem cells. Blocking this repression leads to a specific post-transcriptional increase of mature let-7 microRNAs, resulting in let-7-dependent stemness defects and accelerated differentiation in the stem cells. These results not only support the Trim71-let-7-microRNA bi-stable switch model in controlling stem cell fate, but also reveal that repressing the conserved pro-differentiation let-7 microRNAs at the mature microRNA level by Ago2 availability is critical to maintaining pluripotency.