A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress

  1. Madlen Stephani
  2. Lorenzo Picchianti
  3. Alexander Gajic
  4. Rebecca Beveridge
  5. Emilio Skarwan
  6. Victor Sanchez de Medina Hernandez
  7. Azadeh Mohseni
  8. Marion Clavel
  9. Yonglun Zeng
  10. Christin Naumann
  11. Mateusz Matuszkiewicz
  12. Eleonora Turco
  13. Christian Loefke
  14. Baiying Li
  15. Gerhard Dürnberger
  16. Michael Schutzbier
  17. Hsiao Tieh Chen
  18. Alibek Abdrakhmanov
  19. Adriana Savova
  20. Khong-Sam Chia
  21. Armin Djamei
  22. Irene Schaffner
  23. Steffen Abel
  24. Liwen Jiang
  25. Karl Mechtler
  26. Fumiyo Ikeda
  27. Sascha Martens
  28. Tim Clausen  Is a corresponding author
  29. Yasin Dagdas  Is a corresponding author
  1. Gregor Mendel Institute, Vienna Biocenter, Austria
  2. Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Austria
  3. The Chinese University of Hong Kong, Hong Kong
  4. Leibniz Institute of Plant Biochemistry, Germany
  5. University of Vienna, Austria
  6. Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), Austria
  7. IPK Gatersleben, Germany
  8. University of Natural Resources and Life Sciences, Austria
  9. the Chinese University of Hong Kong, Hong Kong
  10. Research Institute of Molecular Pathology, Austria
  11. Medical Institute of Bioregulation (MIB), Kyushu University, Japan

Abstract

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the ER. Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.

Data availability

All the raw data associated with the figures are uploaded to Dryad and accessible here doi:10.5061/dryad.wm37pvmkb. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD019988.

Article and author information

Author details

  1. Madlen Stephani

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  2. Lorenzo Picchianti

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  3. Alexander Gajic

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  4. Rebecca Beveridge

    Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
    Competing interests
    No competing interests declared.
  5. Emilio Skarwan

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  6. Victor Sanchez de Medina Hernandez

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  7. Azadeh Mohseni

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  8. Marion Clavel

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  9. Yonglun Zeng

    School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  10. Christin Naumann

    Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Salle), Germany
    Competing interests
    No competing interests declared.
  11. Mateusz Matuszkiewicz

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  12. Eleonora Turco

    Max F Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  13. Christian Loefke

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  14. Baiying Li

    School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  15. Gerhard Dürnberger

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  16. Michael Schutzbier

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  17. Hsiao Tieh Chen

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  18. Alibek Abdrakhmanov

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  19. Adriana Savova

    Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
    Competing interests
    No competing interests declared.
  20. Khong-Sam Chia

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  21. Armin Djamei

    Breeding Research, IPK Gatersleben, Stadt Seeland, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8087-9566
  22. Irene Schaffner

    BOKU Core Facility Biomolecular & Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  23. Steffen Abel

    Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
    Competing interests
    No competing interests declared.
  24. Liwen Jiang

    School of Life Sciences, the Chinese University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  25. Karl Mechtler

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    No competing interests declared.
  26. Fumiyo Ikeda

    Department of Molecular and Cellular Biology, Medical Institute of Bioregulation (MIB), Kyushu University, Fukuoka, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0407-2768
  27. Sascha Martens

    Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
    Competing interests
    Sascha Martens, is member of the scientific advisory board of Casma Therapeutics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3786-8199
  28. Tim Clausen

    Research Institute of Molecular Pathology, Vienna, Austria
    For correspondence
    tim.clausen@imp.ac.at
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1582-6924
  29. Yasin Dagdas

    Gregor Mendel Institute, Vienna Biocenter, Vienna, Austria
    For correspondence
    yasin.dagdas@gmi.oeaw.ac.at
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9502-355X

Funding

Vienna Science and Technology Fund (LS17-047)

  • Madlen Stephani
  • Lorenzo Picchianti
  • Tim Clausen
  • Yasin Dagdas

Austrian Science Fund (P32355)

  • Yasin Dagdas

Austrian Science Fund (P30401-B21)

  • Sascha Martens

Austrian Science Fund (I3033-B22)

  • Armin Djamei

Austrian Science Fund (Unidocs fellowship)

  • Adriana Savova

Austrian Academy of Sciences

  • Alexander Gajic
  • Emilio Skarwan
  • Victor Sanchez de Medina Hernandez
  • Azadeh Mohseni
  • Marion Clavel
  • Christian Loefke
  • Alibek Abdrakhmanov
  • Yasin Dagdas

Horizon 2020 Framework Programme (No.646653)

  • Sascha Martens

The Financial Supports for Young Scientists International Research Scholarship Fund (BWM 315/2018)

  • Mateusz Matuszkiewicz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Stephani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,636
    views
  • 1,609
    downloads
  • 178
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madlen Stephani
  2. Lorenzo Picchianti
  3. Alexander Gajic
  4. Rebecca Beveridge
  5. Emilio Skarwan
  6. Victor Sanchez de Medina Hernandez
  7. Azadeh Mohseni
  8. Marion Clavel
  9. Yonglun Zeng
  10. Christin Naumann
  11. Mateusz Matuszkiewicz
  12. Eleonora Turco
  13. Christian Loefke
  14. Baiying Li
  15. Gerhard Dürnberger
  16. Michael Schutzbier
  17. Hsiao Tieh Chen
  18. Alibek Abdrakhmanov
  19. Adriana Savova
  20. Khong-Sam Chia
  21. Armin Djamei
  22. Irene Schaffner
  23. Steffen Abel
  24. Liwen Jiang
  25. Karl Mechtler
  26. Fumiyo Ikeda
  27. Sascha Martens
  28. Tim Clausen
  29. Yasin Dagdas
(2020)
A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress
eLife 9:e58396.
https://doi.org/10.7554/eLife.58396

Share this article

https://doi.org/10.7554/eLife.58396

Further reading

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.