Autism: Balancing excitation and inhibition in the autistic brain

A metric called the Hurst exponent could be a useful biomarker for studies exploring brain differences between men and women with autism spectrum disorder.
  1. Charlotte M Pretzsch
  2. Dorothea L Floris  Is a corresponding author
  1. Department of Forensic and Neurodevelopmental Sciences, Kings' College London, United Kingdom
  2. Donders Centre for Cognitive Neuroimaging, Netherlands

Balance and stability are important for the human body. This is clearly true for some physical tasks, such as walking or running without falling over, but it is also true inside the brain. Neurons receive both excitatory and inhibitory inputs, and maintaining a balance between the two – that is, maintaining what is known as the excitation-inhibition or E:I balance – is crucial for the brain to work properly (Yizhar et al., 2011).

Disruptions to the E:I balance, such as increased levels of excitatory inputs, have been linked to autism and a number of other neurological conditions, and can affect brain function and social behavior (Rubenstein and Merzenich, 2003). It has also been shown that the E:I balance can depend on sex, especially in regions of the brain that support social behavior, such as the ventromedial prefrontal cortex (Lai et al., 2019). However, research into the relationships between autism, sex and social behavior have been hampered by a lack of non-invasive tools. Now, in eLife, Michael Lombardo (Istituto Italiano di Tecnologia and University of Cambridge) and colleagues – including Stavros Trakoshis and Pablo Martínez-Cañada as joint first authors – report how it may be possible to measure the E:I balance without causing damage to the brain (Trakoshis et al., 2020).

The researchers – who are based in Italy, Cyprus, South Korea, the United Kingdom, Switzerland, and Canada – first created a computational model of the brain and used data from this model to calculate a metric called the Hurst exponent. This metric is a measure of the long-term memory of a time series of data. The model was then tweaked to simulate the effect of a ligand called CNO (which is short for clozapine-N-oxide) on two receptors hM3Dq and hM4Di, which are synthetic proteins designed to bind synthetic drugs. When CNO binds to hM3Dq it increases excitation, and when it binds to hM4Di it reduces both excitation and inhibition. Trakoshis et al. found that the change in the E:I balance caused by CNO also changed the Hurst exponent: specifically, an increase in excitation decreased the Hurst exponent (Figure 1).

Maintaining a balance of excitatory and inhibitory input in neurons.

An imbalance between excitatory and inhibitory inputs to neurons in certain regions of the brain has been linked to neuropsychiatric conditions such as autism spectrum disorder (ASD). However, it is not possible to measure such imbalances directly, so it would be useful to have a proxy marker. Based on computer simulations and experiments on genetically manipulated mice (top), Trakoshis et al. found that a metric called the Hurst exponent, which can be determined using non-invasive electrical and magnetic measurements, can provide information on imbalances between excitatory and inhibitory input. In particular, an increase in excitation (E) led to a decrease in the Hurst exponent (H). Experiments on autistic and typically developing (TD) men and women show that: i) the value of H for men with autism is much lower than the value for TD men; ii) the value of H for women with autism is higher than the value for TD women; iii) in women with autism, the value of H further correlated with social behavior.

Second, the researchers tested if they could replicate these computational results in mice that had undergone chemogenetic manipulation to express hM3Dq and hM4Di. This involved measuring electrical activity in the prefrontal cortex of the mice before, during and after the administration of CNO, and then computing the Hurst exponent. They found that the in vivo results in mice confirmed the predictions of their computational model. Specifically, a drug-induced increase in excitation led to a decrease in the Hurst exponent.

Third, Trakoshis et al. wanted to find out why E:I processes may differ between males and females. They found that genes associated with autism that also affect the E:I balance (especially excitation) overlapped with genes that are sensitive to male-specific hormones. A comparison of these results with a gene expression map called the Allan Human Brain Atlas (Hawrylycz et al., 2012) further revealed that these genes are expressed in many regions of the brain, including the ventromedial prefrontal cortex.

To investigate how the E:I balance may differ between autistic men and women, and how those differences may relate to social behavior, Trakoshis et al. collected neural time series data and computed the Hurst exponent in individuals with and without autism (who were similar in age and IQ). In the ventromedial prefrontal cortex, the Hurst exponent of individuals with autism was lower than that of typically developing individuals, with the difference between the two being larger in males than in females. Moreover, in women with autism, the Hurst exponent was linked with social behavior: a higher (i.e., more typical) value was accompanied by a better ability to 'socially camouflage' – that is, the ability to compensate for social-communicative difficulties.

Taken together, these results suggest that the Hurst exponent may be a useful biomarker to examine the E:I balance and its relationship with sex and social behavior across the autism spectrum. More research is needed to investigate if shifting the E:I balance in the ventromedial prefrontal cortex could alter social behavior in people with autism. In the future, this approach could be extended into other conditions linked to E:I balance and sex-differences, such as attention deficit hyperactivity disorder.

References

Article and author information

Author details

  1. Charlotte M Pretzsch

    Charlotte M Pretzsch is in the Department of Forensic and Neurodevelopmental Sciences, Kings' College London, United Kingdom

    Contributed equally with
    Dorothea L Floris
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2761-6628
  2. Dorothea L Floris

    Dorothea L Floris is in the Donders Centre for Cognitive Neuroimaging, Nijmegen, Netherlands

    Contributed equally with
    Charlotte M Pretzsch
    For correspondence
    D.floris@donders.ru.nl
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5838-6821

Publication history

  1. Version of Record published: August 4, 2020 (version 1)

Copyright

© 2020, Pretzsch and Floris

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,132
    views
  • 272
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charlotte M Pretzsch
  2. Dorothea L Floris
(2020)
Autism: Balancing excitation and inhibition in the autistic brain
eLife 9:e60584.
https://doi.org/10.7554/eLife.60584

Further reading

    1. Medicine
    Venkateshwari Varadharajan, Iyappan Ramachandiran ... J Mark Brown
    Research Advance

    Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive. Previously, we identified MBOAT7-driven acylation of lysophosphatidylinositol lipids as key mechanism suppressing the progression of NAFLD (Gwag et al., 2019). Here, we show that MBOAT7 loss of function promotes ALD via reorganization of lysosomal lipid homeostasis. Circulating levels of MBOAT7 metabolic products are significantly reduced in heavy drinkers compared to healthy controls. Hepatocyte- (Mboat7-HSKO), but not myeloid-specific (Mboat7-MSKO), deletion of Mboat7 exacerbates ethanol-induced liver injury. Lipidomic profiling reveals a reorganization of the hepatic lipidome in Mboat7-HSKO mice, characterized by increased endosomal/lysosomal lipids. Ethanol-exposed Mboat7-HSKO mice exhibit dysregulated autophagic flux and lysosomal biogenesis, associated with impaired transcription factor EB-mediated lysosomal biogenesis and autophagosome accumulation. This study provides mechanistic insights into how MBOAT7 influences ALD progression through dysregulation of lysosomal biogenesis and autophagic flux, highlighting hepatocyte-specific MBOAT7 loss as a key driver of ethanol-induced liver injury.

    1. Medicine
    2. Neuroscience
    Flora Moujaes, Jie Lisa Ji ... Alan Anticevic
    Research Article

    Background:

    Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine’s molecular mechanisms connect to its neural and behavioral effects.

    Methods:

    We conducted a single-blind placebo-controlled study, with participants blinded to their treatment condition. 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hr). We quantified resting-state functional connectivity via data-driven global brain connectivity and related it to individual ketamine-induced symptom variation and cortical gene expression targets.

    Results:

    We found that: (i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; (ii) ketamine’s data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, while the mean effect did not; and (iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level.

    Conclusions:

    These results highlight the importance of considering individual behavioral and neural variation in response to ketamine. They also have implications for the development of individually precise pharmacological biomarkers for treatment selection in psychiatry.

    Funding:

    This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1–190420) (FXV, KHP); Swiss Neuromatrix Foundation (Grant No. 2016–0111) (FXV, KHP); Swiss National Science Foundation under the framework of Neuron Cofund (Grant No. 01EW1908) (KHP); Usona Institute (2015 – 2056) (FXV).

    Clinical trial number:

    NCT03842800