1. Ecology
  2. Plant Biology
Download icon

Genetic variation, environment and demography intersect to shape Arabidopsis defense metabolite variation across Europe

  1. Ella Katz  Is a corresponding author
  2. Jia-Jie Li
  3. Benjamin Jaegle
  4. Haim Ashkenazy
  5. R Shawn Abrahams
  6. Clement Bagaza
  7. Samuel Holden
  8. J Chris Pires
  9. Ruthie Angelovici
  10. Daniel J Kliebenstein
  1. University of California, Davis, United States
  2. Gregor Mendel Institute, Austrian Academy of Sciences, Austria
  3. Max Planck Institute for Developmental Biology, Germany
  4. University of Missouri, United States
Research Article
  • Cited 0
  • Views 500
  • Annotations
Cite this article as: eLife 2021;10:e67784 doi: 10.7554/eLife.67784

Abstract

Plants produce diverse metabolites to cope with the challenges presented by complex and ever-changing environments. These challenges drive the diversification of specialized metabolites within and between plant species. However, we are just beginning to understand how frequently new alleles arise controlling specialized metabolite diversity and how the geographic distribution of these alleles may be structured by ecological and demographic pressures. Here we measure the variation in specialized metabolites across a population of 797 natural Arabidopsis thaliana accessions. We show a combination of geography, environmental parameters, demography, and different genetic processes all combine to influence the specific chemotypes and their distribution. This showed that causal loci in specialized metabolism contain frequent independently generated alleles with patterns suggesting potential within species convergence. This provides a new perspective about the complexity of the selective forces and mechanisms that shape the generation and distribution of allelic variation that may influence local adaptation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Ella Katz

    Plant Sciences, University of California, Davis, Davis, United States
    For correspondence
    elkatz@ucdavis.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1619-5597
  2. Jia-Jie Li

    Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  3. Benjamin Jaegle

    Vienna Biocenter (VBC), Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  4. Haim Ashkenazy

    Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5079-4684
  5. R Shawn Abrahams

    Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1749-2040
  6. Clement Bagaza

    Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
    Competing interests
    No competing interests declared.
  7. Samuel Holden

    Division of Biological Sciences, University of Missouri, Columbia, United States
    Competing interests
    No competing interests declared.
  8. J Chris Pires

    Division of Biological Sciences, University of Missouri, Columbia, United States
    Competing interests
    No competing interests declared.
  9. Ruthie Angelovici

    Division of Biological Sciences, University of Missouri, Columbia, United States
    Competing interests
    No competing interests declared.
  10. Daniel J Kliebenstein

    Department of Plant Sciences, University of California, Davis, Davis, United States
    Competing interests
    Daniel J Kliebenstein, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5759-3175

Funding

National Science Foundation (MCB 1906486)

  • Daniel J Kliebenstein

United States - Israel Binational Agricultural Research and Development Fund (FI-560-2017)

  • Ella Katz
  • Daniel J Kliebenstein

National Science Foundation (IOS 1655810)

  • Daniel J Kliebenstein

National Science Foundation (IOS 1754201)

  • Ruthie Angelovici

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Meredith C Schuman, University of Zurich, Switzerland

Publication history

  1. Received: February 23, 2021
  2. Accepted: May 2, 2021
  3. Accepted Manuscript published: May 5, 2021 (version 1)

Copyright

© 2021, Katz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 500
    Page views
  • 102
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    Fletcher W Halliday et al.
    Research Article

    Quantifying the relative impact of environmental conditions and host community structure on disease is one of the greatest challenges of the 21st century, as both climate and biodiversity are changing at unprecedented rates. Both increasing temperature and shifting host communities towards more fast-paced life-history strategies are predicted to increase disease, yet their independent and interactive effects on disease in natural communities remains unknown. Here, we address this challenge by surveying foliar disease symptoms in 220, 0.5 meter-diameter herbaceous plant communities along a 1100-meter elevational gradient. We find that increasing temperature associated with lower elevation can increase disease by (1) relaxing constraints on parasite growth and reproduction, (2) determining which host species are present in a given location, and (3) strengthening the positive effect of host community pace-of-life on disease. These results provide the first field evidence, under natural conditions, that environmental gradients can alter how host community structure affects disease.

    1. Ecology
    2. Microbiology and Infectious Disease
    Chun-Yang Li et al.
    Research Article

    Dimethylsulfoniopropionate (DMSP) is an abundant and ubiquitous organosulfur molecule in marine environments with important roles in global sulfur and nutrient cycling. Diverse DMSP lyases in some algae, bacteria and fungi cleave DMSP to yield gaseous dimethyl sulfide (DMS), an infochemical with important roles in atmospheric chemistry. Here we identified a novel ATP-dependent DMSP lyase, DddX. DddX belongs to the acyl-CoA synthetase superfamily and is distinct from the eight other known DMSP lyases. DddX catalyses the conversion of DMSP to DMS via a two-step reaction: the ligation of DMSP with CoA to form the intermediate DMSP-CoA, which is then cleaved to DMS and acryloyl-CoA. The novel catalytic mechanism was elucidated by structural and biochemical analyses. DddX is found in several Alphaproteobacteria, Gammaproteobacteria and Firmicutes, suggesting that this new DMSP lyase may play an overlooked role in DMSP/DMS cycles.