1. Developmental Biology
  2. Stem Cells and Regenerative Medicine
Download icon

Neural control of growth and size in the axolotl limb regenerate

  1. Kaylee M Wells
  2. Kristina Kelley
  3. Mary Baumel
  4. Warren A Vieira
  5. Catherine D McCusker  Is a corresponding author
  1. University of Massachusetts Boston, United States
Research Article
  • Cited 0
  • Views 185
  • Annotations
Cite this article as: eLife 2021;10:e68584 doi: 10.7554/eLife.68584

Abstract

The mechanisms that regulate growth and size of the regenerating limb in tetrapods such as the Mexican axolotl are unknown. Upon the completion of the developmental stages of regeneration, when the regenerative organ known as the blastema completes patterning and differentiation, the limb regenerate is proportionally small in size. It then undergoes a phase of regeneration that we have called the 'tiny-limb' stage, that is defined by rapid growth until the regenerate reaches the proportionally appropriate size. In the current study we have characterized this growth and have found that signaling from the limb nerves is required for its maintenance. Using the regenerative assay known as the Accessory Limb Model, we have found that growth and size of the limb positively correlates with nerve abundance. We have additionally developed a new regenerative assay called the Neural Modified-ALM (NM-ALM), which decouples the source of the nerves from the regenerating host environment. Using the NM-ALM we discovered that non-neural extrinsic factors from differently sized host animals do not play a prominent role in determining the size of the regenerating limb. We have also discovered that the regulation of limb size is not autonomously regulated by the limb nerves. Together, these observations show that the limb nerves provide essential cues to regulate ontogenetic allometric growth and the final size of the regenerating limb.

Data availability

The raw data used to generate the figures for this paper are available in the source data files corresponding to that figure.

Article and author information

Author details

  1. Kaylee M Wells

    Biology Department, University of Massachusetts Boston, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kristina Kelley

    Biology Department, University of Massachusetts Boston, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mary Baumel

    Biology Department, University of Massachusetts Boston, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8551-4785
  4. Warren A Vieira

    Biology Department, University of Massachusetts Boston, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine D McCusker

    Biology, University of Massachusetts Boston, Boston, United States
    For correspondence
    catherine.mccusker@umb.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0127-433X

Funding

National Institutes of Health (0R15HD092180-01A1)

  • Catherine D McCusker

University of Massachusetts Boston (Doctoral Dissertation Grant)

  • Kaylee M Wells

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The experimental work was approved by the Institutional Animal Care and Use Committee of the University of Massachusetts Boston; protocol number IACUC2015004, animal welfare assurance number D16-00246 (A3383-01).

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Publication history

  1. Received: March 19, 2021
  2. Accepted: November 13, 2021
  3. Accepted Manuscript published: November 15, 2021 (version 1)

Copyright

© 2021, Wells et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 185
    Page views
  • 50
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Jody A Summers, Elizabeth Martinez
    Research Article Updated

    Postnatal ocular growth is regulated by a vision-dependent mechanism that acts to minimize refractive error through coordinated growth of the ocular tissues. Of great interest is the identification of the chemical signals that control visually guided ocular growth. Here, we provide evidence that the pro-inflammatory cytokine, interleukin-6 (IL-6), may play a pivotal role in the control of ocular growth using a chicken model of myopia. Microarray, real-time RT-qPCR, and ELISA analyses identified IL-6 upregulation in the choroids of chick eyes under two visual conditions that introduce myopic defocus and slow the rate of ocular elongation (recovery from induced myopia and compensation for positive lenses). Intraocular administration of atropine, an agent known to slow ocular elongation, also resulted in an increase in choroidal IL-6 gene expression. Nitric oxide appears to directly or indirectly upregulate choroidal IL-6 gene expression, as administration of the non-specific nitric oxide synthase inhibitor, L-NAME, inhibited choroidal IL-6 gene expression, and application of a nitric oxide donor stimulated IL-6 gene and protein expression in isolated chick choroids. Considering the pleiotropic nature of IL-6 and its involvement in many biological processes, these results suggest that IL-6 may mediate many aspects of the choroidal response in the control of ocular growth.

    1. Developmental Biology
    2. Genetics and Genomics
    Juliet R Girard et al.
    Research Article Updated

    Mechanistic studies of Drosophila lymph gland hematopoiesis are limited by the availability of cell-type-specific markers. Using a combination of bulk RNA-Seq of FACS-sorted cells, single-cell RNA-Seq, and genetic dissection, we identify new blood cell subpopulations along a developmental trajectory with multiple paths to mature cell types. This provides functional insights into key developmental processes and signaling pathways. We highlight metabolism as a driver of development, show that graded Pointed expression allows distinct roles in successive developmental steps, and that mature crystal cells specifically express an alternate isoform of Hypoxia-inducible factor (Hif/Sima). Mechanistically, the Musashi-regulated protein Numb facilitates Sima-dependent non-canonical, and inhibits canonical, Notch signaling. Broadly, we find that prior to making a fate choice, a progenitor selects between alternative, biologically relevant, transitory states allowing smooth transitions reflective of combinatorial expressions rather than stepwise binary decisions. Increasingly, this view is gaining support in mammalian hematopoiesis.