1. Cell Biology
  2. Developmental Biology
Download icon

Duox generated reactive oxygen species activate ATR/Chk1 to induce G2 arrest in Drosophila tracheoblasts

  1. Amrutha Kizhedathu
  2. Piyush Chhajed
  3. Lahari Yeramala
  4. Deblina Sain Basu
  5. Tina Mukherjee
  6. Kutti R Vinothkumar
  7. Arjun Guha  Is a corresponding author
  1. Institute for Stem Cell Biology and Regenerative Medicine (inStem), India
  2. National Centre for Biological Sciences, India
Research Advance
  • Cited 0
  • Views 189
  • Annotations
Cite this article as: eLife 2021;10:e68636 doi: 10.7554/eLife.68636

Abstract

Progenitors of the thoracic tracheal system of adult Drosophila (tracheoblasts) arrest in G2 during larval life and rekindle a mitotic program subsequently. G2 arrest is dependent on ATR-dependent phosphorylation of Chk1 that is actuated in the absence of detectable DNA damage. We are interested in the mechanisms that activate ATR/Chk1 (Kizhedathu et al., 2018, 2020). Here we report that levels of reactive oxygen species (ROS) are high in arrested tracheoblasts and decrease upon mitotic re-entry. High ROS is dependent on expression of Duox, an H2O2 generating-Dual Oxidase. ROS quenching by overexpression of Superoxide Dismutase 1, or by knockdown of Duox, abolishes Chk1 phosphorylation and results in precocious proliferation. Tracheae deficient in Duox, or deficient in both Duox and regulators of DNA damage-dependent ATR/Chk1 activation (ATRIP/TOPBP1/ Claspin), can induce phosphorylation of Chk1 in response to micromolar concentrations of H2O2 in minutes. The findings presented reveal that H2O2 activates ATR/Chk1 in tracheoblasts by a non-canonical, potentially direct, mechanism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1,2,3,4

Article and author information

Author details

  1. Amrutha Kizhedathu

    Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Piyush Chhajed

    Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Lahari Yeramala

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Deblina Sain Basu

    Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Tina Mukherjee

    Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3776-5536
  6. Kutti R Vinothkumar

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Arjun Guha

    Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
    For correspondence
    arjung@instem.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3753-1484

Funding

Department of Biotechnology, Ministry of Science and Technology, India (inStem Core Funds)

  • Arjun Guha

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Amin S. Ghabrial, Columbia University, United States

Publication history

  1. Received: March 24, 2021
  2. Accepted: October 7, 2021
  3. Accepted Manuscript published: October 8, 2021 (version 1)
  4. Accepted Manuscript updated: October 11, 2021 (version 2)

Copyright

© 2021, Kizhedathu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 189
    Page views
  • 34
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Developmental Biology
    Elise Houssin et al.
    Research Article Updated

    In multiple cell lineages, Delta-Notch signalling regulates cell fate decisions owing to unidirectional signalling between daughter cells. In Drosophila pupal sensory organ lineage, Notch regulates the intra-lineage pIIa/pIIb fate decision at cytokinesis. Notch and Delta that localise apically and basally at the pIIa-pIIb interface are expressed at low levels and their residence time at the plasma membrane is in the order of minutes. How Delta can effectively interact with Notch to trigger signalling from a large plasma membrane area remains poorly understood. Here, we report that the signalling interface possesses a unique apico-basal polarity with Par3/Bazooka localising in the form of nano-clusters at the apical and basal level. Notch is preferentially targeted to the pIIa-pIIb interface, where it co-clusters with Bazooka and its cofactor Sanpodo. Clusters whose assembly relies on Bazooka and Sanpodo activities are also positive for Neuralized, the E3 ligase required for Delta activity. We propose that the nano-clusters act as snap buttons at the new pIIa-pIIb interface to allow efficient intra-lineage signalling.

    1. Cell Biology
    2. Neuroscience
    Zhong-Jiao Jiang et al.
    Research Article Updated

    Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.