Singledose BNT162b2 vaccine protects against asymptomatic SARSCoV2 infection
Abstract
The BNT162b2 mRNA COVID19 vaccine (PfizerBioNTech) is being utilised internationally for mass COVID19 vaccination. Evidence of singledose protection against symptomatic disease has encouraged some countries to opt for delayed booster doses of BNT162b2, but the effect of this strategy on rates of asymptomatic SARSCoV2 infection remains unknown. We previously demonstrated frequent pauci and asymptomatic SARSCoV2 infection amongst healthcare workers (HCWs) during the UK’s first wave of the COVID19 pandemic, using a comprehensive PCRbased HCW screening programme (Rivett et al., 2020; Jones et al., 2020). Here, we evaluate the effect of firstdose BNT162b2 vaccination on test positivity rates and find a fourfold reduction in asymptomatic infection amongst HCWs ≥12 days postvaccination. These data provide realworld evidence of shortterm protection against asymptomatic SARSCoV2 infection following a single dose of BNT162b2 vaccine, suggesting that mass firstdose vaccination will reduce SARSCoV2 transmission, as well as the burden of COVID19 disease.
Introduction
The UK has initiated mass COVID19 immunisation, with healthcare workers (HCWs) given early priority because of the potential for workplace exposure and risk of onward transmission to patients. The UK’s Joint Committee on Vaccination and Immunisation has recommended maximising the number of people vaccinated with first doses at the expense of early booster vaccinations, based on singledose efficacy against symptomatic COVID19 disease (Department of Health and Social Care, 2021; Polack et al., 2020; Voysey et al., 2021).
At the time of writing, three COVID19 vaccines have been granted emergency use authorisation in the UK, including the BNT162b2 mRNA COVID19 vaccine (PfizerBioNTech). A vital outstanding question is whether this vaccine prevents asymptomatic as well as symptomatic SARSCoV2 infection or merely converts infections from symptomatic to asymptomatic. Subclinical infection following vaccination could continue to drive transmission. This is especially important because many UK HCWs have received this vaccine, and nosocomial COVID19 infection has been a persistent problem.
Through the implementation of a 24 hour turnaround PCRbased comprehensive HCW screening programme at Cambridge University Hospitals NHS Foundation Trust (CUHNFT), we previously demonstrated the frequent presence of pauci and asymptomatic infection amongst HCWs during the UK’s first wave of the COVID19 pandemic (Rivett et al., 2020). Here, we evaluate the effect of firstdose BNT162b2 vaccination on test positivity rates and cycle threshold (Ct) values in the asymptomatic arm of our programme, which now offers weekly screening to all staff.
Results and discussion
Vaccination of HCWs at CUHNFT began on 8 December 2020, with mass vaccination from 8 January 2021. Here, we analyse data from 2 weeks spanning 18–31 January 2021, during which (1) the prevalence of COVID19 amongst HCWs remained approximately constant and (2) we screened comparable numbers of vaccinated and unvaccinated HCWs. During this period, 4408 (week 1) and 4411 (week 2) PCR tests were performed on individuals reporting well to work, from a weekly onsite HCW population of ~9000. We stratified HCWs <12 days or ≥12 days postvaccination because this was the point at which protection against symptomatic infection began to appear in the phase III clinical trial (Polack et al., 2020). In the postvaccination groups, the median number of days between vaccination and testing were 7 (interquartile range [IQR] 4–9; <12 day group) and 16 (14–18; ≥12 day group).
Twentysix of 3252 (0.8%, Wilson’s interval 0.6–1.2%) tests from unvaccinated HCWs were positive (Ct < 36), compared to 13/3535 (0.4%, Wilson’s interval 0.2–0.6%) tests from HCWs <12 days postvaccination and 4/1989 (0.2%, Wilson’s interval 0.1–0.5%) tests from HCWs ≥12 days postvaccination (p=0.023 and p=0.004, respectively; Fisher’s exact test, Figure 1 and Table 1). This suggests a fourfold decrease in the risk of asymptomatic SARSCoV2 infection amongst HCWs ≥12 days postvaccination, compared to unvaccinated HCWs, with an intermediate effect amongst HCWs <12 days postvaccination.
A marked reduction in infections was also seen when analyses were repeated with (1) inclusion of HCWs testing positive through both the symptomatic and asymptomatic arms of the programme (56/3370 [1.7%, Wilson’s interval 1.3–2.2%] unvaccinated vs 8/2018 [0.4%, Wilson’s interval 0.2–0.8%] ≥12 days postvaccination, 4.2fold reduction, p<0.0001) and (2) inclusion of PCR tests that were positive at the limit of detection (Ct > 36, 42/3268 [1.3%, Wilson’s interval 1.0–1.7%] vs 15/2000 [0.7%, Wilson’s interval 0.5–1.2%], 1.7fold reduction, p=0.07). In addition, the median Ct value of positive tests showed a nonsignificant trend towards increase between unvaccinated HCWs and HCWs ≥12 days postvaccination (23.3 [IQR 13.5–33.0] to 30.3 [IQR 25.5–35.1], Figure 1), raising the possibility that vaccinated individuals who do go on to develop infection may have lower viral loads.
HCWs working in COVID19 clinical areas were prioritised for vaccination, and a small number of clinically vulnerable HCWs were also given priority. Otherwise, vaccine allocation was arbitrary. Since asymptomatic infection was examined, the date of infection could have been earlier than the test date. These factors would all tend to lead to an underestimate of the vaccine’s effect (bias towards the null). Because of the rapid decline in the incidence of SARSCoV2 infection in the Cambridge community, this study could only examine the shortterm impact of singledose BNT162b2 vaccination. The frequency of prior SARSCoV2 infection (Cooper et al., 2020) was similar in all groups (seroprevalence 7.1%, unvaccinated; 5.6%, <12 days postvaccination; 5.7%, ≥12 days postvaccination), suggesting that this did not confound our observations.
Taken together, our findings provide realworld evidence of shortterm protection against asymptomatic SARSCoV2 infection after a single dose of BNT162b2 vaccine, at a time when the UK COVID19 variant of concern 202012/01 (lineage B.1.1.7) accounted for the great majority of infections (24/29 sequenced isolates from asymptomatic HCWs). A fourfold reduction from 0.8% to 0.2% in asymptomatic infection is likely to be crucial in controlling nosocomial SARSCoV2 transmission. Nonetheless, protection is incomplete, suggesting that continuing asymptomatic HCW screening, social distancing, maskwearing, and strict hand hygiene remain vital.
Materials and methods
HCW screening programme
Request a detailed protocolWe previously described protocols for staff screening, sample collection, and results reporting in detail (Rivett et al., 2020; Jones et al., 2020). In general, these methods remained unchanged throughout this study period. Two parallel streams of entry into the testing programme included (1) HCW symptomatic and HCW symptomatic household contact screening arms and (2) an HCW asymptomatic screening arm. Since our prior description of the screening programme, weekly asymptomatic testing is now offered to all CUHNFT staff. Testing was performed (1) at temporary onsite ‘Pods’ and (2) via selfswabbing kits collected by HCWs. Individuals performed a selfswab of the oropharynx and anterior nasal cavity. Samples were subjected to RNA extraction and amplification using realtime RTPCR, with all sample processing and analysis undertaken at the Cambridge COVID19 Testing Centre (Lighthouse Laboratory).
Vaccination
Request a detailed protocolHCW vaccination began at CUHNFT on 8 December 2020, with appointments made by invitation only for all highrisk HCWs working onsite. This was followed by selfbooked appointments for HCWs working in designated COVID19 clinical areas, from 8 January 2021 onwards. From 18 January 2021, vaccination was offered to all HCWs, with appointments made via a booking website and latterly using the hospital’s electronic patient record system ‘MyChart’. All vials of PfizerBioNTech COVID19 Vaccine (BNT162b2) were stored at −74°C, before being transferred to storage at 2–8°C. From the moment the vials were removed from the freezer, they were given a 120 hr expiration date, of which 3 hr were dedicated to thawing the vaccines. All vaccine doses were administered intramuscularly by trained vaccinators, in accordance with the manufacturer’s instructions. Vaccination was undertaken exclusively at an onsite vaccination centre, with mandatory maskwearing and social distancing in place. HCWs remained at the onsite vaccination centre for a minimum observation period of 15 min after vaccination.
Data extraction and analysis
Request a detailed protocolSwab result, vaccination details, and serology data for HCWs were extracted directly from the hospitallaboratory interface software, Epic (Verona, WI). Data were collated using Microsoft Excel and the figure produced with GraphPad Prism (GraphPad Software, La Jolla, CA). Fisher’s exact test was used for the comparison of positive rates between groups, defined in the main text. Additionally, 95% confidence intervals were calculated using Wilson’s method.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data file has been provided for Figure 1.
References

Safety and efficacy of the BNT162b2 mRNA Covid19 vaccineNew England Journal of Medicine 383:2603–2615.https://doi.org/10.1056/NEJMoa2034577
Decision letter

Jos WM van der MeerSenior and Reviewing Editor; Radboud University Medical Centre, Netherlands
In the interests of transparency, eLife publishes the most substantive revision requests and the accompanying author responses.
Acceptance summary:
The investigators expanded their healthcare worker (HCW) asymptomatic screening programme by offering weekly testing to all staff at Cambridge University Hospitals. They also rapidly rolled out vaccination of the staff with the BNT162b2 mRNA vaccine (PfizerBioNTech). This provided the opportunity to investigate whether the vaccination protects against infection (i.e., transmission), or just abrogates COVID19 disease. This is particularly important, because the vaccine has been widely administered to HCWs, and nosocomial infections have blighted hospitals throughout the pandemic. Published clinical trials data have so far only addressed whether this vaccine prevents symptomatic COVID19. Here, the investigators show that asymptomatic SARSCOV2 infection is also markedly reduced in a realworld setting, with fourfold fewer infections 12 days postvaccination onward. The findings are of great interest, supporting the role of singledose BNT162b2 vaccination to reduce SARSCoV2 transmission. The findings are also applicable to nonhealthcare settings, may guide healthcare policies.
https://doi.org/10.7554/eLife.68808.sa1Author response
[Editors' note: we include below the reviews that the authors received from another journal, along with the authors’ responses.]
Reviewer #1:
This short communication describes an opportunistic analysis of results of regular screening PCR tests for SARS CoV2 among healthcare workers some of whom had received the Pfizer vaccine and shows a reduction in positive results most marked from 12 days post dose. The allocation of vaccine was (presumably) nonrandom so there is some potential for bias which is not acknowledged (although this might have favoured frontline workers first who might be expected to be more exposed).
We thank the reviewer for highlighting this important potential source of confounding in our observations. We had not previously discussed confounding due to the stated word limits for ‘Correspondence’ articles. We have now included a description of the potential limitations of the study in a brief paragraph on limitations:
“HCWs working in COVID19 clinical areas were prioritised for vaccination first, and a small number of clinically vulnerable HCWs were also given priority. Otherwise, vaccine allocation was uniformly at random. As asymptomatic infection was examined, the date of infection could have been earlier than the test date. These would all likely lead to an underestimate of the vaccine’s effect (bias towards the null). This study could only examine the shortterm impact of singledose BNT162b2 vaccination.”
It would also be helpful to know what the uptake rate of regular screening tests for HCWs at this hospital was at the time of the study and the range of time between vaccination and testing among those included in the analysis.
We thank the reviewer for this useful suggestion. Uptake at the time of study was ~50% (4,408 – 4,411 weekly tests from a population of ~9,000 HCW who worked at least one shift in each week [lines 4546]). We have now included median and interquartile range values for the number of days since vaccination in each of the postvaccine groups (lines 4850).
Reviewer #2:
This is an interesting and important analysis. However, I don't think the evidence presented is sufficient to claim that, "…we provide real world evidence for a high level of protection against symptomatic SARSCoV2 infection after a single dose of BNT162b2 vaccine.". This might be overstated. There is no data to support an argument that the findings last over time and without a second dose of the vaccine at 3/52.
We thank the reviewer for highlighting this important study limitation. We have now included a brief paragraph on study limitations, which emphasises that “this study could only examine the shortterm impact of singledose BNT162b2 vaccination”. We have also reworded the first sentence of the concluding paragraph, so as not to overstate the study conclusions: “Our findings provide realworld observational evidence of high level shortterm protection against asymptomatic SARSCoV2 infection after a single dose of BNT162b2 vaccine, at a time of predominant transmission when the UK COVID19 variant of concern 202012/01 (lineage B.1.1.7) accounted for >90% of local infections, and amongst a population with a relatively low frequency of prior infection (7.2% antibody positive).”.
Also, there is no evidence presented that I can see to suggest that the single dose vaccine is effective against the B.1.1.7 strain. Perhaps the authors could comment on the % of SARSCoV2 infections that were B.1.1.7?
We thank the reviewer for this useful suggestion. We have now included a sentence on the rate of B.1.1.7 lineage detection in samples from local community at the time of study “at a time when the UK COVID19 variant of concern 202012/01 (lineage B.1.1.7) accounted for >90% of local infections”. This is based on publicly available COGUK sequencing data, which found that from 228 sequenced samples from Cambridgeshire from between 18/01/21 and 31/01/21, 207 (90.8%) were identified as lineage B.1.1.7. https://β.microreact.org/project/kqW9xZtPytsXUpbyhVFCZMcoguk20210225uksarscov2/
Reviewer #3:
Thank you for the opportunity to review this timely manuscript. As the COVID vaccines start to make their way out of the highestrisk populations and into more generally atrisk groups information regarding immediate efficacy and arresting of spread is essential for shaping vaccine rollout policies. I'd like to offer some comments on these preliminary findings:
1a. The authors' presentation of the three different groups (unvaccinated, those with fewer than 12 days postvaccine and those with more than 12 days post vaccine) is accompanied by pvalues which are testing the rate of positive PCR tests over all by group and then under various subsets. I do not see the statistical validity of these tests. This is not a random sample or a randomized trial. Is there evidence to suggest that the HCW were randomly selected or received vaccines that were not purposive in some way? Applying pvalues to this data suggests that there is some potential for replicability where I do not think such a condition actually exists based on this design. If there is some evidence to suggest that the vaccination of HCW was random then it should appear in this document. The absence of randomization of any kind opens the door to argument about potential (and unexplored) confounding.
Many thanks for these comments. We have discussed at length our approach and data with two leading statisticians in Cambridge, who as a result have now been included as full authors. Shaun Seaman works at the MRC Biostatistics Unit, and his particular interests are in methodologies for drawing causal inferences from observation data and for handling selection biases. Professor Richard Samworth is the University of Cambridge Professor of Statistical Science and the Director of the University Statistical Laboratory. Both agree with our approach, and have been instrumental in writing this rebuttal. In response to the points raised:
a. Pvalues and confounding. Pvalues are frequently used in observational studies such as ours. It is standard practice when analysing observational studies to present pvalues for differences between nonrandomised groups and then to discuss potential confounding and how such confounding might be expected to bias the results. A pvalue may be less than 0.05 because `treatment' or `exposure' (in this case, vaccination) has a causal effect on the outcome (in this case, testing positive), because of random chance (which is unlikely when p<0.05), or because of confounding bias. We had not yet discussed confounding due to the stated word limits for ‘Correspondence’ articles, however have now included a paragraph explicitly discussing limitations of our study. HCWs working in COVID19 clinical areas were prioritised for vaccination first, and a small number of clinically vulnerable HCWs working elsewhere in the hospital were also given priority. Apart from that, vaccine allocation was uniformly at random. This would be likely to lead to an underestimate of the vaccine’s effect on asymptomatic infection, and we now directly reference this potential bias in lines 6671 of our paragraph on study limitations.
In addition, the dates of infection would have been earlier than the dates of test, meaning that some positive tests in individuals who had been vaccinated >12 days may have been due to infections that occurred <12 days after vaccination. This would cause a bias towards underestimating the benefit of vaccination.
b. Randomisation and potential for replicability. It is not being claimed that the data originate from a random sample or randomised controlled trial. However, for our study, the data could be considered to be random in at least three different ways. First, Cambridge University Hospitals (CUH) could be thought of as randomly chosen hospitals from a population of similar hospitals. Had we randomly chosen different hospitals, we would have observed different numbers of positive tests in the three vaccination groups. Second, we could think of the CUH staff as being a random sample from the population of possible staff that CUH might have employed. Again, had the staff been different, so would have been the numbers of positive tests in each of the groups. Third, we can imagine hypothetically rerunning January 2021. Again, the numbers of positive tests in each of the groups would then be different. This conceptualisation of the sample as coming from a hypothetical infinite population is standard in statistics. See, for example, Professor David Spiegelhalter's book `The art of statistics' pages 9193, or Professor George Barnard's discussion (JRSSB 1971 vol 33 page 377):
"Another way to bring the standard theory to bear is to view the population from which we draw our samples as itself a sample from a superpopulation. This model of the survey process – which can be a perfectly valid model – perhaps does not receive the attention it deserves in the paper we have under discussion. My limited experience of the use of surveys in the social sciences suggests, indeed, that the superpopulation model is usually the appropriate one. One is rarely, for example, concerned with the finite de facto population of the U.K. at a given instant of time; one is more concerned with a conceptual population of people like those at present living in the U.K. If one adopts the superpopulation model, then since a simple random sample of a simple random sample is itself a simple random sample, the problems of inference can be dealt with along classical lines."
1b. Adding to that, it looks like the authors looked at all of the PCR screenings made over a two week period. This means that they looked at the whole population of screenings done during this time period and not a random sample of those screenings. Any differences observed between these groups are different but cannot be considered "statistically different" because there is no real potential for variability inherent in THIS design. These are not a random sample of PCR screenings  they are all the screenings that happened in the time frame. Saying it's a random sample in time is also false because the authors did not actually randomly select these weeks  they purposively chose them to see what was going on between the groups.
Please see our comments above about randomisation. We performed an observational study and are not claiming that the data came from a random sample. We chose the core two weeks of study (18/1/20 – 31/1/20) for the following reasons:
i. Prior to these two weeks, only a very small proportion of tests were from the ≥12 days since vaccination group because mass vaccination began on 8^{th} January 2021. Exclusive examination of data earlier to 18/1/20 would have limited our ability to assess the effect of vaccination when an effect may be expected according to the phase III clinical trial.
ii. After these two weeks, a relatively small proportion of tests were from the unvaccinated group, because most people had been vaccinated by then.
iii. The prevalence of infection over the two weeks of study was stable in the unvaccinated group, facilitating simple comparison.
In the text, we have already stated “Here, we analyse data from the two weeks spanning 18th to 31st January 2021, during which: (a) the prevalence of COVID19 amongst HCWs remained approximately constant; and (b) we screened comparable numbers of vaccinated and unvaccinated HCWs.” Furthermore, as we demonstrate, our analysis is robust to the choice of weeks. As discussed above (‘Randomisation and potential for replicability’), it is possible to regard the data as a random sample from a larger population. One limitation of our study includes the sampling from a single location (Cambridge), which could restrict the generalisability of our results. Nonetheless, we think it is very unlikely that vaccine efficacy will differ substantively between hospitals.
We have now included full weekbyweek data for the extended sixweek period of study (28/12/2020 – 07/02/2021) as an appendix to the manuscript to enable a full reanalysis of our data by any interested parties, and to highlight why the 2week period used for primary analysis was chosen. As discussed in response to reviewer #3 point 5, we have also removed this analysis from the main manuscript.
In terms of the reviewer’s comment about examining the whole population of screenings as opposed to a random selection of them, it was necessary to examine the full sample as the proportion of positive tests in the vaccinated group in particular was very small (4/1989 tests). For any reliable estimate of a small proportion, a large sample size is required.
1c. What I would recommend instead of presenting these results as if they were inferential is to put 95% ClopperPearson intervals (or some other exact method as the authors choose) and describe these populations rather than comparing them as if they were randomly assigned and present these results as observational and descriptive rather than making them seem experimental and inferential.
In reviewer #3 point (3), the reviewer suggests that there was "no real potential for variability in this design". If this were true, then there would also be no justification for presenting confidence intervals. Both pvalues and confidence intervals are statements about what would happen over repeated samples of the data. If confidence intervals are meaningful, then so are pvalues. A 95% confidence interval is a random interval that would include the true proportion in (at least) 95% of repeated samples. A pvalue is the proportion of the repeated samples where the difference between the proportions in the two (or more) groups is as large as the difference that is seen in the observed data. For our study, repeated sampling could be interpreted in at least three different ways (see ‘Randomisation and potential for replicability’ in our response to reviewer #3 point 1). Whilst we agree with the reviewer’s request to include a discussion of the limitations of the study, we disagree that pvalues are inappropriate, and we fail to understand why confidence intervals can be appropriate if pvalues are not.
To address the reviewer’s point, we have reanalysed all of the data providing 95% confidence intervals, using Wilson’s method (please see results below). This illustrates that both pvalues and intervals calculated using an exact method lead to similar conclusions.
26/3,252 (0·80%, Wilson’s interval 0.55 – 1.17%) tests from unvaccinated HCWs were positive (Ct<36), compared to 13/3,535 (0·37%, Wilson’s interval 0.22 – 0.63%) from HCWs <12 days postvaccination and 4/1,989 (0·20%, Wilson’s interval 0.08 – 0.51%) tests from HCWs ≥12 days postvaccination (p=0·023 and p=0·004, respectively; Fisher’s exact test, Figure).
A marked reduction in infections was also seen when analyses were repeated with: (a) inclusion of HCWs testing positive through both the symptomatic and asymptomatic arms of the programme (56/3,370 (1·71%, Wilson’s interval 1.282.15%) unvaccinated vs 8/2,018 (0·40%, Wilson’s interval 0.20 – 0.79%) ≥12 days postvaccination, 4·3fold reduction, p=0·00001); (b) inclusion of PCR tests which were positive at the limit of detection (Ct>36, 42/3,268 (1·29%, Wilson’s interval 0.96 – 1.74%) vs 15/2,000 (0·75%, Wilson’s interval 0.461.23%), 1·7fold reduction, p=0·075); and (c) extension of the period of analysis to include six weeks from December 28th to February 7th 2021 (113/14,083 (0·80%, Wilson’s interval 0.67 – 0.96%) vs 5/4,872 (0·10%, Wilson’s interval 0.04 – 0.24%), 7·8fold reduction, p=1x10^{9}).
2. The authors (p2) appear to be presenting analyses where they noticed the largest differences between unvaccinated and 12+ days postvaccination accompanied by pvalues to suggest that these differences possess scientific significance. It is unknown how many different tests the authors carried out and it is a wellknown statistical fact that the number of erroneous but significant results is directly related to the number of tests carried out on a dataset. The authors are cherrypicking significant findings and presenting them as if this were a scientific study driven by hypotheses that could actually be tested. It looks, to me, like they used all the data they could and found all the significant differences they could find and present them here. There's no discussion of practical significance  the fact that less than 1% of health care workers who aren't vaccinated are potentially asymptomatic COVID positive. There's no discussion of the false positive or false negative rate of the PCR test that could be impacting all three groups and there's no justification such a large sample size was explicitly necessary for this investigation. The Fisher's Exact test is easily fooled into producing a significant result simply by inflating the sample size. The authors excessive sample size could be enough to create significance when in fact it may not really be there at all. To me, for example, the fact that almost the same number of people tested positive after being vaccinated as did without the vaccine is a bigger problem than talking about whether they were testing positive relative to when they had the vaccine. Chasing after significance has led to missing this important fact about the vaccinated HCW that are still potentially spreading COVID even though they may think they're safe.
Many thanks for offering the opportunity to clarify our data further. In terms of the points made:
1. Choice of weeks. As described in the response to reviewer #3 point 2, the study period analysed was rationally chosen in order to include comparable numbers of vaccinated and unvaccinated HCWs, over a period in which the prevalence of COVID19 amongst HCWs remained approximately constant. Furthermore, our analysis was robust to examination of an extended six week period chosen using similar principles. To further address this point and provide full data for analysis by others, full weekbyweek data is now presented in the appendix (see also response to reviewer #3 point 3).
2. Practical significance. The practical significance of the results is demonstrated by the magnitude of the risk ratios, which are large. The proportion of asymptomatic screening tests is expected to be lower than the proportion of symptomatic tests. Even if fewer than 1% of unvaccinated HCWs tested positive over the course of the period of study, a 75% reduction is clearly extremely valuable in preventing nosocomial transmission to vulnerable patients and other staff i.e. from the point of view of infection control within the hospital, the difference between 0.2% and 0.8% is highly clinically significant. We have added a sentence “Nevertheless, the 75% reduction in asymptomatic infection offered by vaccination is likely to be crucial to control nosocomial transmission of SARSCoV2.” to the Discussion section to highlight this.
3. False positive and false negative rate. Errors in the test represent a form of measurement error, which, unless the sensitivity and specificity are different in vaccinated and unvaccinated individuals, is likely to cause the estimated relative risk to be slightly biased towards the null hypothesis (i.e. the size of the effect will be underestimated).
4. Sample size. We have discussed the necessity for testing the full, large sample size in our response to reviewer #3 point 2. This is required in order to reliably estimate a small proportion of positive tests. When a large sample is available, we fail to see the justification for discarding part of this sample just to reduce the power of a statistical test to detect small effects. We agree that when the sample size is large, a null hypotheses of no effect can be (correctly) rejected when the effect size is nonzero but small. That is one reason why it is important to present the estimate of the effect size, as we have done here.
5. Reviewer’s suggestion that ‘almost the same number of people tested positive after being vaccinated as did without the vaccine’. The basis for this statement is unclear to us. As stated, 26/3,252 (0·8%) tests from unvaccinated HCWs were positive, compared to 13/3,535 (0·4%) from HCWs <12 days postvaccination and 4/1,989 (0·2%) tests from HCWs ≥12 days postvaccination. As discussed above, an effect on symptomatic infections in the original phase III clinical trial was seen from 12 days onwards. The most important comparison is therefore between the proportions of positive tests in the unvaccinated and ≥12 days post vaccination groups. Furthermore, the most important comparison is between proportions of positive tests, not total numbers.
6. ‘Vaccinated HCW are still potentially spreading COVID’. We agree that the vaccine is not a panacea and have already suggested that vaccinated HCWs are substantially less likely to become infected spread SARSCoV2, as opposed to being completely protected. To emphasise this point, we have added the sentence “This protection was by no means complete, suggesting that continued asymptomatic HCW screening, social distancing, maskwearing and strict hand hygiene remain vital.” to the end of the discussion.
3. The authors present additional analyses where they extend the time period to include more unvaccinated health care workers in an effort to further inflate the apparent difference between vaccinated and unvaccinated HCW. If there was no demonstration of efficacy of the vaccine then there might be a chance for the null to be true in a situation like this. As it was, we expect the vaccinated group to have less incidence of positive testing, so this contrivance is simply a manufacturing of evidence without any real grounding as to why it's an important "finding." Adding in all the rest of the data since the beginning of the vaccination rollout reinforces my earlier point that this truly is now the whole population and should not be accompanied by a pvalue for any reason. These findings are just not statistically significant  they are what they are. If there's any real practical difference that should be discussed here. In addition, the numbers used in the extended time period do not make sense. They do not indicate which groups are being compared (113/14k what? 5/4.8k what?). This whole thing just doesn't make sense to me and looks like it's just another way to produce a significantlooking pvalue without having a real experimental design first.
Our intention in analysing the extended sixweek period was merely to determine whether our conclusions were robust across a longer period of time. The weeks included in this analysis met at least one of the two major criteria for selection (i.e. constant prevalence of infection in the unvaccinated group, and/or sufficient tests in the ≥12weeks post vaccination group to assess the proportion of positive tests).
Nevertheless because this has caused confusion, we have removed the sixweek analysis, and have given further details in the form of a weekbyweek data over this period in an appendix.
Furthermore, vaccine efficacy against asymptomatic infection was absolutely not presupposed. Indeed, to try to answer that key question is exactly why we performed the study! To clarify this point, we have changed the statement “A vital outstanding question is whether this vaccine prevents asymptomatic as well as symptomatic SARSCoV2 infection, or converts infections from symptomatic to asymptomatic.”.
Please see our other responses above, which already address other points in this section.
4. I do not agree with the authors' conclusions regarding the value of their "evidence." There is nothing in here to suggest that the vaccination has actually reduced the number of asymptomatic carriers in this population. The rate of positive tests in those vaccinated does not appear to be practically different in the vaccinated and unvaccinated and the only way the authors could make this look like evidence was to manufacture significant pvalues through purposive comparisons and sample size inflation. The authors do not rely on sound scientific and statistical methodology to demonstrate their results and present their observational findings as if they were the result of a designed experiment.
This is extremely problematic. The pandemic has been raging for more than a year and vaccination is our best chance to controlling the spread and potentiating a return to social normality. There are a tremendous number of problems with vaccination; barriers to vaccination are rooted in great mistrust of the health care system and antivaxxers are compelling in their arguments because they can look at manufactured research like this and easily demonstrate its flaws and fallibility. They can easily make the point that if the vaccine really worked then why would they have to make things like this up to show it? They can then suggest that it's evidence of a hidden agenda and we've lost the fight. Fabrication of evidence and manufacturing significant findings to create the illusion of science is not going to help move the vaccine into the population desperately hoping for a return to normal but skeptical about how that will happen when they can't trust the people who should be trying to help them. This research which was supposed to show that the vaccine is working does so in a way that looks like it's really prestidigitation made to fool people into doing something they should want to do but don't.
Please see our responses to similar points above. For the avoidance of doubt, our study design was as follows:
a. Record all screening test results during the relevant period;
b. Measure the proportions of positives in the different groups;
c. Compare the proportions of positives between the groups.
It was therefore an extremely simple, transparent study, which would be inherently difficult to manipulate. We reject in the strongest possible terms the reviewer’s suggestions (both implicit and explicit) that we have fabricated evidence, manufactured significant findings or engaged in any sort of prestidigitation. These are categorically untrue.
Response to second round for reviews:
Reviewer #1:
In Jones et al., the authors are investigating whether single dose BNT162b2 mRNA COVID19 vaccine protects from asymptomatic SARSCoV2 infection in a HCW cohort. They claim that there is a 4fold reduction in risk of asymptomatic SARSCoV2 infection in vaccinated HCW at >12d post single dose vaccination compared to unvaccinated HCW. The study was carried out in a HCW cohort with documented prior SARSCoV2 infection at 7.2% (by positive serology). The B.1.1.7 variant may have accounted for about 90% of infections.
This is an extremely important question.
Many thanks for these comments, and for noting that our study addresses an extremely important question.
Major concerns
1. Prior infection history. A recent Letter published in the Lancet [Charlotte Manisty, et al. Antibody response to first BNT162b2 dose in previously SARSCoV2infected individuals. Lancet. 2021 Feb 25] showed that HCW with a prior history of mild or asymptomatic SARSCoV2 infection made a substantially enhanced response following single dose vaccination with BNT162b2 such that the single dose prime was effectively acting as a boost. In this study, the authors report a 7.2% frequency of prior infection in the HCW cohort being studied. However, the authors do not comment on the frequency of prior natural infection across the three groups studied (unvaccinated, <12d post vaccination & >12d post vaccination). This is important because this could be an important potential confounding factor in the analysis of the study. Prior immunity from natural infection or boosted immunity following single dose vaccination may protect from SARSCoV2 infection thus impacting on frequency of PCR positive tests across the three groups. Prior infection history (as documented by serology) needs to be taken into account in the analysis. This data is almost certainly available for the HCW cohort being reported here.
Many thanks for this interesting suggestion. Our manuscript was originally submitted on Feb 21, prior to the publication by Mainsty et al. Nevertheless, we have now compared the frequency of natural infection across the three groups studied. The frequency of prior SARSCoV2 infection (as documented by a positive serological test for SARSCoV2 prior to 28/12/2020) was similar across all groups (7.1%, unvaccinated; 5.6%, <12 days postvaccination; 5.7%, ≥12 days postvaccination) suggesting that this did not confound our observations. We have added this data to our manuscript (lines 7578).
2. B.1.1.7 variant. The authors should show the frequency of B.1.1.7 variant / WT SARSCoV2 across each of the three groups studied (as documented by actual study PCR data during study follow up and not a local average). This data should be available for the HCW cohort being reported here. It is picked up by the PCR test as the ∆69/70 deletion results in failure to detect the S gene target while the ORF1ab and N are not affected. This is how PHE was first alerted to the emergence and spread of the B.1.1.7 variant in the UK. There is no biological evidence presented in this study to show that single dose BNT162b2 protects against the B.1.1.7 variant.
Many thanks for this interesting suggestion. We are certainly aware of the potential for some PCR assays to estimate the proportion of ∆69/70 viruses by S gene dropout. In fact, only a fraction of the Lighthouse labs and wider PHE regional laboratory network routinely use triple target PCR testing – this reflects the different platforms used between laboratories in the network, an intentional design feature which provides resilience in the UK’s testing capacity. As such, the S gene is not targeted by the platform used in the Cambridge COVID19 Testing Centre (Lighthouse lab). PCR to identify the B.1.1.7 variant was therefore not routinely available during the study period.
We considered it highly likely that infections amongst HCWs in Cambridge would be representative of viruses circulating in the Cambridge community (and indeed, UK) during the study period. Nevertheless, we have now been able to confirm this by examining Nanopore sequencing data for isolates from asymptomatic HCWs. Over the 2week period used for the primary analysis, 29/43 viral isolates have been successfully sequenced, of which 24/29 (83%) were from the B.1.1.7 lineage. Across the three groups, 15/19 (79%) sequences from positive unvaccinated HCWs were B.1.1.7, compared to 6/7 (86%) from HCWs <12 days postvaccination and 3/3 (100%) from HCWs ≥12 days postvaccination (no significant difference between groups).
We have added data on the overall percentage of sequences that were the B.1.1.7 variant to the manuscript (lines 8283). We have also added two main authors (Dr. Ben Warne and Professor Ian Goodfellow) who played major roles in the sequencing effort, and additional authors from COGUK to the group authorship.
3. Lack of follow up beyond 18d. The study can only comment on short term impact of first dose vaccination as the latest time point studied is d18. This is a major deficiency of the study as the second dose of BNT162b2 has been delayed by 12 weeks in the UK and the results described here do not address any later time points. There will have been a proportion of HCW that did not have a COVID19 vaccine (about 35% of HCW in Leicester for example) and this group could be included in the analysis (for comparison at later time points).
We thank the reviewer for highlighting this point. We previously addressed this same point in response to reviewer #2 point #1 (in their original review). We included a paragraph on study limitations, specifically emphasising that “this study could only examine the shortterm impact of singledose BNT162b2 vaccination”, and reworded the first sentence of the concluding paragraph: “Our findings provide realworld observational evidence of high level shortterm protection against asymptomatic SARSCoV2 infection after a single dose of BNT162b2 vaccine…”
Unlike in Leicester, >85% of HCWs participating in our screening programme have now been vaccinated. Combined with the rapid decline in incidence of SARSCoV2 infection in the local community, in the last week of data we present (starting 01/02/2021), there were only 3/4282 positive tests overall, offering little scope for analysis of later time points amongst our cohort.
Reviewer #3:
Thank you for the opportunity to take a look at the revised manuscript. I have read through the authors' responses to both the others' and my reviews and I have some additional comments:
1. Thank you for taking a look at what I had to say about your article and addressing many of the statistical issues I commented on in my initial review. The authors are to be commended for seeking out professional advice and the addition of two professional statisticians to the manuscript says a lot about the authors' commitment to scientific rigor.
We are grateful for this comment, and agree with this point.
2. I would like to thank the authors for the comment regarding pvalues and confidence intervals. The authors are, of course, correct that pvalues and confidence intervals "come from the same place" whereby changing from one incorrect form of inference to another is not really making a real change. However, the confidence interval provides considerably more information to the reader where the pvalue provides no information at all. A 95% confidence interval gives the reader a rough idea of how large or small an effect one may expect to see in repeating a study. A pvalue may tell you the chance of seeing a result as extreme in magnitude of occurring in replication but evidence based practice should be more about bang for one's buck. Including the confidence interval, while still inappropriate for inferential purposes in this study, provide greater description of the data and that is an invaluable addition to this paper. Thank you for choosing to make the article more valuable by adding in this very useful information.
We are grateful for this comment, and agree with this point.
3. Following from my previous comment, I see that the authors chose to use Wilson's approach for producing their intervals. My guess is they chose this approach because the ClopperPearson approach (an exact approach) gives a wider interval and my guess is that led to "loss of significance." Considering their decision to use other exact tests makes me wonder why they went with an approximation here.
In their prior review, reviewer #3 requested “What I would recommend instead of presenting these results as if they were inferential is to put 95% ClopperPearson intervals (or some other exact method as the authors choose)…”
We chose to use Wilson’s exact method at the suggestion of our professional statistical colleagues. Shaun Seaman works at the MRC Biostatistics Unit, and his particular interests are in methodologies for drawing causal inferences from observation data and for handling selection biases. Professor Richard Samworth is the University of Cambridge Professor of Statistical Science and the Director of the University Statistical Laboratory. Both are now included as full authors. They referenced the very highly cited manuscript by Brown, Cai and Dasgupta 2001 “‘Interval estimation for a binomial proportion”. Here, the authors suggest: “The ClopperPearson interval is wastefully conservative and is not a good choice for practical use… better exact methods are available…” “For larger n, the Wilson, the Jeffreys and the Agresti–Coull intervals are all comparable”.
We have now calculated ClopperPearson intervals, and the results are very similar. For example, for our primary outcome 26/3,252 (0·80%) tests from unvaccinated HCWs were positive (Wilson interval 0.55 – 1.17%; ClopperPearson interval 0.52 – 1.17%), compared to 4/1,989 (0·20%) tests from HCWs ≥12 days postvaccination (Wilson interval 0.08 – 0.51%; ClopperPearson interval 0.05 – 0.51%).
4. The authors make a point about "estimating a small proportion" requiring a large sample size. This really is not the case at all. Any sample size is sufficient for estimating a proportion of any size. Yes, some samples may give an estimate that will never be exact, but this does not mean that the estimator itself is problematic. Consider a population with 100 individuals and one of them is sick so the true P = 0.01. If we select a sample of size n=5 we will never get a good estimate of the truth from our sample. There are a total of (100C5) possible samples or 75287520. Of those, 71523144 result in an estimate of p=0 and the remaining 3764376 produce an estimate of p=0.2. Clearly, both resulting estimates are wrong but, on average the estimate comes out to be 1% which is the true population proportion. What the authors really mean is that if they want a really PRECISE estimate of their small proportion then they need a really large sample size. An unbiased estimator doesn't get more unbiased as the sample size increases; it just gets more precise, which is what the authors need if they want to show that their really small differences are statistically significant.
We agree with the reviewer that to estimate precisely the small proportions of positive cases in each group, a large sample size was required. This is why we included all screening test results in our analysis, rather than a random sample. We agree that we should have used the term precise rather than reliable in our original response, and thank the reviewer for pointing this out.
5. The authors' response regarding clinical significance is greatly appreciated. I am a statistician and not a clinician, so when I see two percentages that are considerably small it is hard for me to know that they are actually important. I appreciate the clarification as it speaks to the relevance of the data from a practical perspective, something I noted was missing in the original draft. The authors do use percent change to create an inflated perceived improvement which I think is perhaps an opportunity to sensationalize a finding that should already be important if a change from 0.8% to 0.2% is already highly significant from a clinical point of view. I just do not understand why, if these results are so clinically important, why the authors need to paint this vivid picture of statistical significance. It makes me wonder, and a little concerned that this was ok with the statisticians that they added to the paper. The use of ratios and percent change are contrivances of modern epidemiology to create effect when they may simply not be there otherwise. If the practical significance is there be honest about it.
Ultimately, the authors' work is very important for many descriptive reasons. My lack of clinical knowledge gives me the inclination to take the authors at their word regarding the practical importance of their findings. However, my considerable statistical knowledge and experience has me wondering.… if these results are so important, why do the authors have to abuse statistical methods to sell them? If they're really this big of a deal, shouldn't they be able to sell themselves on their own merit?
It is certainly not our intention to inflate the perceived improvement, and we agree that absolute differences can be important. We have made precise estimates of the small proportions of positive cases in each group, as acknowledged by the reviewer in point #4, which facilitates assessment of the change in %infection between groups. To address this point, we have changed “Nevertheless a 75% reduction in asymptomatic infection…' to 'Nevertheless a fourfold reduction from 0.8% to 0.2% in asymptomatic infection…”.
By analogy, if the prevalence of COVID19 infection in two regions of the UK were (for instance) 0.8% vs 0.2%, the reviewer would presumably agree that such a difference would be exceptionally important.
To be completely transparent, we have presented both proportions (as %) and absolute numbers in every instance in the text, together with all the raw data in the appendix. We believe that both provide valuable information and context, and have made great efforts to report the significance of our findings accurately instead of sensationalising them. We therefore do not feel it is at all fair to say that we have 'abused statistical methods'. We hope that on reflection the referee will accept this and retract this unjustified accusation.
If the authors are willing to report their findings descriptively, using 95% Wilson intervals to show effect (as they agree this is important in their response) and eschew pvalues then I will reconsider my decision. If the authors present their findings cleanly, without resorting to ratios and percent differences which sensationalize the findings and inflate their perceived importance then I will be happy to accept their work for publication. Finally, I think it's important for all of the authors to understand that statistical methods are about quantifying uncertainty and not about coming up with the best estimate of the truth. The beauty of an observational study is in its opportunity to provide us with an idea of how things are going; from that perspective ANY sample size can provide sufficient information to inform future research. It's only when we're blinded by the need for statistical significance that we start looking for ways to "find results" rather than answer real questions.
As in our original rebuttal, we believe that pvalues also have merit alongside confidence intervals, whilst accepting the reviewer's point that additional information is provided by confidence intervals. We have therefore now included both, using identical wording to the statement we provided in our original rebuttal. We note that the reviewer accepted this statement as “an invaluable addition to this paper” (reviewer #3 point 2 above; lines 53, 54, 55, 62, 63, 65).
For the reasons stated above, we believe it is clearly helpful to include ratios (fold reductions) to estimate the size of the effect. This is entirely consistent with the approach taken by other studies in the medical literature. Again, we absolutely reject the reviewer’s suggestion that we have attempted to “find results”. This is simply untrue.
If the editors wish us to remove these ratios, we would be willing to do so, however we believe this would make life unnecessarily difficult for the reader.
https://doi.org/10.7554/eLife.68808.sa2I do hope that my comments are helpful and give the authors an opportunity to decide how to best convey the story their data are telling.
Article and author information
Author details
Funding
Wellcome Trust (108070/Z/15/Z)
 Michael P Weekes
Wellcome Trust (207498/Z/17/Z)
 Ian G Goodfellow
Wellcome Trust (210688/Z/18/Z)
 Paul J Lehner
Medical Research Council (MR/P008801/1)
 Nicholas J Matheson
NHS Blood and Transplant (WPA1502)
 Nicholas J Matheson
EPSRC (EP/P031447/1)
 Richard J Samworth
Medical Research Council (MC_UU_00002/10)
 Shaun Seaman
EPSRC (EP/N031938/1)
 Richard J Samworth
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Acknowledgements
This work was funded in part by Wellcome Senior Clinical Research Fellowships (Grant numbers 108070/Z/15/Z to MPW, 207498/Z/17/Z to IGG), a Wellcome Principal Research Fellowship to PJL (210688/Z/18/Z), an MRC Clinician Scientist Fellowship (MR/P008801/1) and NHSBT workpackage (WPA1502) to NJM, EPSRC grants to RJS (EP/P031447/1,EP/N031938/1), and an MRC grant to SS (MC_UU_00002/10). The sequencing costs were funded by the COVID19 Genomics UK (COGUK) Consortium, which is supported by funding from the Medical Research Council (MRC) part of UK Research and Innovation (UKRI), the National Institute of Health Research (NIHR), and Genome Research Limited, operating as the Wellcome Sanger Institute. Funding was also received from Addenbrooke’s Charitable Trust and the NIHR Cambridge Biomedical Research Centre. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. We also acknowledge contributions from all staff at CUHNFT Occupational Health and Wellbeing, the COVID19 vaccination programme and the Cambridge COVID19 Testing Centre.
Ethics
Human subjects: This study was conducted as a service evaluation of the CUHNFT staff testing and vaccination services (CUHNFT clinical project ID ID3682). As a study of healthcareassociated infections, this investigation is exempt from requiring ethical approval under Section 251 of the NHS Act 2006 (see also the NHS Health Research Authority algorithm, available at http://www.hradecisiontools.org.uk/research/, which concludes that no formal ethical approval is required).
Senior and Reviewing Editor
 Jos WM van der Meer, Radboud University Medical Centre, Netherlands
Publication history
 Received: March 26, 2021
 Accepted: April 7, 2021
 Accepted Manuscript published: April 8, 2021 (version 1)
 Version of Record published: April 23, 2021 (version 2)
Copyright
© 2021, Jones et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics

 5,345
 Page views

 620
 Downloads

 44
 Citations
Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading

 Epidemiology and Global Health
 Medicine
Previously, we showed that 3% (31/1032)of asymptomatic healthcare workers (HCWs) from a large teaching hospital in Cambridge, UK, tested positive for SARSCoV2 in April 2020. About 15% (26/169) HCWs with symptoms of coronavirus disease 2019 (COVID19) also tested positive for SARSCoV2 (Rivett et al., 2020). Here, we show that the proportion of both asymptomatic and symptomatic HCWs testing positive for SARSCoV2 rapidly declined to nearzero between 25th April and 24th May 2020, corresponding to a decline in patient admissions with COVID19 during the ongoing UK ‘lockdown’. These data demonstrate how infection prevention and control measures including staff testing may help prevent hospitals from becoming independent ‘hubs’ of SARSCoV2 transmission, and illustrate how, with appropriate precautions, organizations in other sectors may be able to resume onsite work safely.

 Epidemiology and Global Health
 Medicine
Significant differences exist in the availability of healthcare worker (HCW) SARSCoV2 testing between countries, and existing programmes focus on screening symptomatic rather than asymptomatic staff. Over a 3 week period (April 2020), 1032 asymptomatic HCWs were screened for SARSCoV2 in a large UK teaching hospital. Symptomatic staff and symptomatic household contacts were additionally tested. Realtime RTPCR was used to detect viral RNA from a throat+nose selfswab. 3% of HCWs in the asymptomatic screening group tested positive for SARSCoV2. 17/30 (57%) were truly asymptomatic/paucisymptomatic. 12/30 (40%) had experienced symptoms compatible with coronavirus disease 2019 (COVID19)>7 days prior to testing, most selfisolating, returning well. Clusters of HCW infection were discovered on two independent wards. Viral genome sequencing showed that the majority of HCWs had the dominant lineage B∙1. Our data demonstrates the utility of comprehensive screening of HCWs with minimal or no symptoms. This approach will be critical for protecting patients and hospital staff.