Abstract

The process wherein dividing cells exhaust proliferative capacity and enter into replicative senescence has become a prominent model for cellular aging in vitro. Despite decades of study, this cellular state is not fully understood in culture and even much less so during aging. Here, we revisit Leonard Hayflick’s original observation of replicative senescence in WI-38 human lung fibroblasts equipped with a battery of modern techniques including RNA-seq, single cell RNA-seq, proteomics, metabolomics, and ATAC-seq. We find evidence that the transition to a senescent state manifests early, increases gradually, and corresponds to a concomitant global increase in DNA accessibility in nucleolar and lamin associated domains. Furthermore, we demonstrate that senescent WI-38 cells acquire a striking resemblance to myofibroblasts in a process similar to the epithelial to mesenchymal transition (EMT) that is regulated by the transcription factors YAP1/TEAD1 and TGF-𝛽2. Lastly, we show that verteporfin inhibition of YAP1/TEAD1 activity in aged WI-38 cells robustly attenuates this gene expression program.

Data availability

Sequencing data have been deposited in GEO under accession code GSE175533.Proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository under accession code EBI PRIDECode for processing and analyzing data modalities have been deposited at https://github.com/dghendrickson/hayflickSource data for figures and analysis have been deposited at https://github.com/dghendrickson/hayflick and/or uploaded as source data files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Michelle Chan

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Michelle Chan, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
  2. Han Yuan

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Han Yuan, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
  3. Ilya Soifer

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Ilya Soifer, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
  4. Tobias M Maile

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Tobias M Maile, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
  5. Rebecca Y Wang

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Rebecca Y Wang, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
  6. Andrea Ireland

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Andrea Ireland, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
  7. Jonathon J O'Brien

    Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Jonathon J O'Brien, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9660-4797
  8. Jérôme Goudeau

    Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Jérôme Goudeau, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2483-1955
  9. Leanne JG Chan

    Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Leanne JG Chan, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  10. Twaritha Vijay

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Twaritha Vijay, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  11. Adam Freund

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Adam Freund, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7956-5332
  12. Cynthia Kenyon

    Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Cynthia Kenyon, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3446-2636
  13. Bryson D Bennett

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Bryson D Bennett, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  14. Fiona E McAllister

    Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Fiona E McAllister, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  15. David R Kelley

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    David R Kelley, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  16. Margaret Roy

    Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Margaret Roy, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  17. Robert L Cohen

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Robert L Cohen, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  18. Arthur D Levinson

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Arthur D Levinson, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  19. David Botstein

    Calico Life Sciences, LLC, South San Francisco, United States
    For correspondence
    botstein@calicolabs.com
    Competing interests
    David Botstein, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  20. David G Hendrickson

    Calico Life Sciences, LLC, South San Francisco, United States
    For correspondence
    dgh@calicolabs.com
    Competing interests
    David G Hendrickson, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1884-5234

Funding

The authors are employed by Calico Sciences, and no external funding was received.

Reviewing Editor

  1. Weiwei Dang, Baylor College of Medicine, United States

Version history

  1. Preprint posted: May 4, 2021 (view preprint)
  2. Received: May 12, 2021
  3. Accepted: January 31, 2022
  4. Accepted Manuscript published: February 4, 2022 (version 1)
  5. Accepted Manuscript updated: February 8, 2022 (version 2)
  6. Version of Record published: March 18, 2022 (version 3)

Copyright

© 2022, Chan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,008
    views
  • 1,188
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelle Chan
  2. Han Yuan
  3. Ilya Soifer
  4. Tobias M Maile
  5. Rebecca Y Wang
  6. Andrea Ireland
  7. Jonathon J O'Brien
  8. Jérôme Goudeau
  9. Leanne JG Chan
  10. Twaritha Vijay
  11. Adam Freund
  12. Cynthia Kenyon
  13. Bryson D Bennett
  14. Fiona E McAllister
  15. David R Kelley
  16. Margaret Roy
  17. Robert L Cohen
  18. Arthur D Levinson
  19. David Botstein
  20. David G Hendrickson
(2022)
Novel insights from a multiomics dissection of the hayflick limit
eLife 11:e70283.
https://doi.org/10.7554/eLife.70283

Share this article

https://doi.org/10.7554/eLife.70283

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.