Abstract

The process wherein dividing cells exhaust proliferative capacity and enter into replicative senescence has become a prominent model for cellular aging in vitro. Despite decades of study, this cellular state is not fully understood in culture and even much less so during aging. Here, we revisit Leonard Hayflick’s original observation of replicative senescence in WI-38 human lung fibroblasts equipped with a battery of modern techniques including RNA-seq, single cell RNA-seq, proteomics, metabolomics, and ATAC-seq. We find evidence that the transition to a senescent state manifests early, increases gradually, and corresponds to a concomitant global increase in DNA accessibility in nucleolar and lamin associated domains. Furthermore, we demonstrate that senescent WI-38 cells acquire a striking resemblance to myofibroblasts in a process similar to the epithelial to mesenchymal transition (EMT) that is regulated by the transcription factors YAP1/TEAD1 and TGF-𝛽2. Lastly, we show that verteporfin inhibition of YAP1/TEAD1 activity in aged WI-38 cells robustly attenuates this gene expression program.

Data availability

Sequencing data have been deposited in GEO under accession code GSE175533.Proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository under accession code EBI PRIDECode for processing and analyzing data modalities have been deposited at https://github.com/dghendrickson/hayflickSource data for figures and analysis have been deposited at https://github.com/dghendrickson/hayflick and/or uploaded as source data files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Michelle Chan

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Michelle Chan, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
  2. Han Yuan

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Han Yuan, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
  3. Ilya Soifer

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Ilya Soifer, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
  4. Tobias M Maile

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Tobias M Maile, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
  5. Rebecca Y Wang

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Rebecca Y Wang, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
  6. Andrea Ireland

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Andrea Ireland, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
  7. Jonathon J O'Brien

    Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Jonathon J O'Brien, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9660-4797
  8. Jérôme Goudeau

    Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Jérôme Goudeau, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2483-1955
  9. Leanne JG Chan

    Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Leanne JG Chan, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  10. Twaritha Vijay

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Twaritha Vijay, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  11. Adam Freund

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Adam Freund, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7956-5332
  12. Cynthia Kenyon

    Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Cynthia Kenyon, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3446-2636
  13. Bryson D Bennett

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Bryson D Bennett, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  14. Fiona E McAllister

    Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Fiona E McAllister, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  15. David R Kelley

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    David R Kelley, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  16. Margaret Roy

    Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Margaret Roy, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  17. Robert L Cohen

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Robert L Cohen, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  18. Arthur D Levinson

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Arthur D Levinson, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  19. David Botstein

    Calico Life Sciences, LLC, South San Francisco, United States
    For correspondence
    botstein@calicolabs.com
    Competing interests
    David Botstein, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
  20. David G Hendrickson

    Calico Life Sciences, LLC, South San Francisco, United States
    For correspondence
    dgh@calicolabs.com
    Competing interests
    David G Hendrickson, is affiliated with Calico Life Sciences, LLC. The author has no other competing interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1884-5234

Funding

The authors are employed by Calico Sciences, and no external funding was received.

Copyright

© 2022, Chan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,686
    views
  • 1,277
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelle Chan
  2. Han Yuan
  3. Ilya Soifer
  4. Tobias M Maile
  5. Rebecca Y Wang
  6. Andrea Ireland
  7. Jonathon J O'Brien
  8. Jérôme Goudeau
  9. Leanne JG Chan
  10. Twaritha Vijay
  11. Adam Freund
  12. Cynthia Kenyon
  13. Bryson D Bennett
  14. Fiona E McAllister
  15. David R Kelley
  16. Margaret Roy
  17. Robert L Cohen
  18. Arthur D Levinson
  19. David Botstein
  20. David G Hendrickson
(2022)
Novel insights from a multiomics dissection of the hayflick limit
eLife 11:e70283.
https://doi.org/10.7554/eLife.70283

Share this article

https://doi.org/10.7554/eLife.70283

Further reading

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Matthew C Pahl, Prabhat Sharma ... Andrew D Wells
    Research Article

    Genome-wide association studies (GWAS) have identified hundreds of genetic signals associated with autoimmune disease. The majority of these signals are located in non-coding regions and likely impact cis-regulatory elements (cRE). Because cRE function is dynamic across cell types and states, profiling the epigenetic status of cRE across physiological processes is necessary to characterize the molecular mechanisms by which autoimmune variants contribute to disease risk. We localized risk variants from 15 autoimmune GWAS to cRE active during TCR-CD28 co-stimulation of naïve human CD4+ T cells. To characterize how dynamic changes in gene expression correlate with cRE activity, we measured transcript levels, chromatin accessibility, and promoter–cRE contacts across three phases of naive CD4+ T cell activation using RNA-seq, ATAC-seq, and HiC. We identified ~1200 protein-coding genes physically connected to accessible disease-associated variants at 423 GWAS signals, at least one-third of which are dynamically regulated by activation. From these maps, we functionally validated a novel stretch of evolutionarily conserved intergenic enhancers whose activity is required for activation-induced IL2 gene expression in human and mouse, and is influenced by autoimmune-associated genetic variation. The set of genes implicated by this approach are enriched for genes controlling CD4+ T cell function and genes involved in human inborn errors of immunity, and we pharmacologically validated eight implicated genes as novel regulators of T cell activation. These studies directly show how autoimmune variants and the genes they regulate influence processes involved in CD4+ T cell proliferation and activation.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Leif Benner, Savannah Muron ... Brian Oliver
    Research Article

    Differentiation of female germline stem cells into a mature oocyte includes the expression of RNAs and proteins that drive early embryonic development in Drosophila. We have little insight into what activates the expression of these maternal factors. One candidate is the zinc-finger protein OVO. OVO is required for female germline viability and has been shown to positively regulate its own expression, as well as a downstream target, ovarian tumor, by binding to the transcriptional start site (TSS). To find additional OVO targets in the female germline and further elucidate OVO’s role in oocyte development, we performed ChIP-seq to determine genome-wide OVO occupancy, as well as RNA-seq comparing hypomorphic and wild type rescue ovo alleles. OVO preferentially binds in close proximity to target TSSs genome-wide, is associated with open chromatin, transcriptionally active histone marks, and OVO-dependent expression. Motif enrichment analysis on OVO ChIP peaks identified a 5’-TAACNGT-3’ OVO DNA binding motif spatially enriched near TSSs. However, the OVO DNA binding motif does not exhibit precise motif spacing relative to the TSS characteristic of RNA polymerase II complex binding core promoter elements. Integrated genomics analysis showed that 525 genes that are bound and increase in expression downstream of OVO are known to be essential maternally expressed genes. These include genes involved in anterior/posterior/germ plasm specification (bcd, exu, swa, osk, nos, aub, pgc, gcl), egg activation (png, plu, gnu, wisp, C(3)g, mtrm), translational regulation (cup, orb, bru1, me31B), and vitelline membrane formation (fs(1)N, fs(1)M3, clos). This suggests that OVO is a master transcriptional regulator of oocyte development and is responsible for the expression of structural components of the egg as well as maternally provided RNAs that are required for early embryonic development.