Viral Condensates: Making it hard to replicate

Understanding how to harden liquid condensates produced by influenza A virus could accelerate the development of novel antiviral drugs.
  1. Billy Wai-Lung Ng  Is a corresponding author
  2. Stephan Scheeff
  3. Josefina Xeque Amada
  1. The Chinese University of Hong Kong, Hong Kong

Understanding how viruses infect cells, replicate, and subsequently spread through the body is crucial for developing effective antiviral therapies. During this process, most common viruses – including the one responsible for flu, influenza A virus – form membrane-less organelles called condensates which help the virus to assemble its genome and replicate (Li et al., 2022). While some small molecules can manipulate the properties of these condensates to prevent viruses from replicating (Risso-Ballester et al., 2021), more research is required to understand how to efficiently and specifically target selected condensates.

Influenza A virus is thought to induce condensates in order to help with genome assembly (Alenquer et al., 2019). Its genome comprises of eight RNA segments, each forming a viral ribonucleoprotein (vRNP) complex that is synthesized in the nucleus. Once formed, the vRNPs migrate to the cytosol where, with a host factor called Rab11a, they create condensates known as viral inclusions, which possess liquid-like properties (Noda and Kawaoka, 2010; Han et al., 2021). Now, in eLife, Maria João Amorim and colleagues – including Temitope Akhigbe Etibor as first author – report how the material properties of these viral inclusions are maintained and regulated in live cells infected with influenza A virus (Etibor et al., 2023).

The team (who are based at Instituto Gulbenkian de Ciência, European Molecular Biology Laboratory and Católica Biomedical Research Centre) monitored the structure and orientation of viral inclusions by measuring their number, shape, size, and density. How the inclusions moved and interacted with each other was also studied through live-cell imaging and by calculating their molecular stability (Banani et al., 2017). Etibor et al. then investigated the impact of different factors on the material properties of the viral inclusions, including temperature, the concentration of vRNPs and Rab11a, and the number and strength of interactions between vRNPs (Figure 1). This allowed them to determine which of these factors has the greatest effect, and how these pathways may be manipulated to develop a new antiviral approach.

Modulating the material properties of the viral inclusions formed by influenza A virus.

During infection, influenza A virus (red) enters host cells (blue) and replicates. To achieve this, two driving factors – viral ribonucleoproteins (vRNPs) and a protein called Rab11a – drive the formation of liquid condensates called viral inclusions (top middle inset). It is thought that hardening these viral inclusions (bottom middle inset) so that they become stiffer and less round will make it more difficult for viruses to replicate and assemble their genomes. Etibor et al. investigated how changes in temperature, the concentration of the driving factors, and the valency (i.e., the number/types of interactions among the vRNPs) affected the properties of influenza A virus inclusions. Raising the temperature and concentration of driving factors led to smaller and larger viral inclusions respectively, but had no effect on the material properties of the viral inclusions (top and middle right inset). Increasing the valency led to more rigid viral inclusions, which were unable to fuse together and lost many of their liquid characteristics (bottom right inset).

Image credit: Figure created with BioRender.

The experiments revealed that while changes in temperature and the concentration of vRNPs and Rab11a altered the size of the viral inclusions, the material properties of the inclusions remained mostly the same. These results are surprising as previous studies have shown that, in general, condensates strongly depend on these two factors. Etibor et al. noted that these findings may be specific to influenza A virus, as its condensates need to maintain liquid-like properties over a wide range of vRNP concentrations to replicate efficiently.

Next, Etibor et al. treated cells with nucleozin, a pharmacological modulator that has been shown to lower the viral load in patients with influenza A in preclinical studies (Kao et al., 2010). Nucleozin glues together nucleoproteins (the major components of vRNPs), expanding the number and type of interactions within individual vRNPs as well as between different complexes. The increased interactions stabilized the vRNPs and led to more rigid and less dynamic viral inclusions which did not dissolve following shock treatments and were less able to fuse together. This suggests that nucleozin hardens the material properties of viral inclusions by increasing interactions between vRNPs.

The team also showed that nucleozin stiffened viral inclusions in the lung cells of mice infected with influenza A virus, and helped speed up the mice’s recovery. Furthermore, nucleozin did not alter the level of other proteins in the cells of the mice, demonstrating the drug’s specificity against the virus.

In summary, Etibor et al. revealed how different factors influence the material properties of viral inclusions in both cells and mice infected with influenza A virus. Their findings suggest that stabilizing vRNP interactions shows the most promise for disrupting the function of viral inclusions, and highlight the potential of antiviral drugs that harden these condensates.

References

Article and author information

Author details

  1. Billy Wai-Lung Ng

    Billy Wai-Lung Ng is in the School of Pharmacy and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong

    For correspondence
    billyng@cuhk.edu.hk
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2892-6318
  2. Stephan Scheeff

    Stephan Scheeff is in the School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7791-9670
  3. Josefina Xeque Amada

    Josefina Xeque Amada is in the School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0008-6847-7725

Publication history

  1. Version of Record published: April 28, 2023 (version 1)

Copyright

© 2023, Ng et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 555
    Page views
  • 46
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Billy Wai-Lung Ng
  2. Stephan Scheeff
  3. Josefina Xeque Amada
(2023)
Viral Condensates: Making it hard to replicate
eLife 12:e88044.
https://doi.org/10.7554/eLife.88044
  1. Further reading

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yuting Zhang, Min Zhang ... Guojiang Chen
    Research Article

    Marburg virus (MARV) is one of the filovirus species that cause deadly hemorrhagic fever in humans, with mortality rates up to 90%. Neutralizing antibodies represent ideal candidates to prevent or treat virus disease. However, no antibody has been approved for MARV treatment to date. In this study, we identified a novel human antibody named AF-03 that targeted MARV glycoprotein (GP). AF-03 possessed a high binding affinity to MARV GP and showed neutralizing and protective activities against the pseudotyped MARV in vitro and in vivo. Epitope identification, including molecular docking and experiment-based analysis of mutated species, revealed that AF-03 recognized the Niemann-Pick C1 (NPC1) binding domain within GP1. Interestingly, we found the neutralizing activity of AF-03 to pseudotyped Ebola viruses (EBOV, SUDV, and BDBV) harboring cleaved GP instead of full-length GP. Furthermore, NPC2-fused AF-03 exhibited neutralizing activity to several filovirus species and EBOV mutants via binding to CI-MPR. In conclusion, this work demonstrates that AF-03 represents a promising therapeutic cargo for filovirus-caused disease.

    1. Microbiology and Infectious Disease
    Chiara Andolina, Wouter Graumans ... Teun Bousema
    Research Article

    It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34–501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171–2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.