Viral Condensates: Making it hard to replicate

Understanding how to harden liquid condensates produced by influenza A virus could accelerate the development of novel antiviral drugs.
  1. Billy Wai-Lung Ng  Is a corresponding author
  2. Stephan Scheeff
  3. Josefina Xeque Amada
  1. The Chinese University of Hong Kong, Hong Kong

Understanding how viruses infect cells, replicate, and subsequently spread through the body is crucial for developing effective antiviral therapies. During this process, most common viruses – including the one responsible for flu, influenza A virus – form membrane-less organelles called condensates which help the virus to assemble its genome and replicate (Li et al., 2022). While some small molecules can manipulate the properties of these condensates to prevent viruses from replicating (Risso-Ballester et al., 2021), more research is required to understand how to efficiently and specifically target selected condensates.

Influenza A virus is thought to induce condensates in order to help with genome assembly (Alenquer et al., 2019). Its genome comprises of eight RNA segments, each forming a viral ribonucleoprotein (vRNP) complex that is synthesized in the nucleus. Once formed, the vRNPs migrate to the cytosol where, with a host factor called Rab11a, they create condensates known as viral inclusions, which possess liquid-like properties (Noda and Kawaoka, 2010; Han et al., 2021). Now, in eLife, Maria João Amorim and colleagues – including Temitope Akhigbe Etibor as first author – report how the material properties of these viral inclusions are maintained and regulated in live cells infected with influenza A virus (Etibor et al., 2023).

The team (who are based at Instituto Gulbenkian de Ciência, European Molecular Biology Laboratory and Católica Biomedical Research Centre) monitored the structure and orientation of viral inclusions by measuring their number, shape, size, and density. How the inclusions moved and interacted with each other was also studied through live-cell imaging and by calculating their molecular stability (Banani et al., 2017). Etibor et al. then investigated the impact of different factors on the material properties of the viral inclusions, including temperature, the concentration of vRNPs and Rab11a, and the number and strength of interactions between vRNPs (Figure 1). This allowed them to determine which of these factors has the greatest effect, and how these pathways may be manipulated to develop a new antiviral approach.

Modulating the material properties of the viral inclusions formed by influenza A virus.

During infection, influenza A virus (red) enters host cells (blue) and replicates. To achieve this, two driving factors – viral ribonucleoproteins (vRNPs) and a protein called Rab11a – drive the formation of liquid condensates called viral inclusions (top middle inset). It is thought that hardening these viral inclusions (bottom middle inset) so that they become stiffer and less round will make it more difficult for viruses to replicate and assemble their genomes. Etibor et al. investigated how changes in temperature, the concentration of the driving factors, and the valency (i.e., the number/types of interactions among the vRNPs) affected the properties of influenza A virus inclusions. Raising the temperature and concentration of driving factors led to smaller and larger viral inclusions respectively, but had no effect on the material properties of the viral inclusions (top and middle right inset). Increasing the valency led to more rigid viral inclusions, which were unable to fuse together and lost many of their liquid characteristics (bottom right inset).

Image credit: Figure created with BioRender.

The experiments revealed that while changes in temperature and the concentration of vRNPs and Rab11a altered the size of the viral inclusions, the material properties of the inclusions remained mostly the same. These results are surprising as previous studies have shown that, in general, condensates strongly depend on these two factors. Etibor et al. noted that these findings may be specific to influenza A virus, as its condensates need to maintain liquid-like properties over a wide range of vRNP concentrations to replicate efficiently.

Next, Etibor et al. treated cells with nucleozin, a pharmacological modulator that has been shown to lower the viral load in patients with influenza A in preclinical studies (Kao et al., 2010). Nucleozin glues together nucleoproteins (the major components of vRNPs), expanding the number and type of interactions within individual vRNPs as well as between different complexes. The increased interactions stabilized the vRNPs and led to more rigid and less dynamic viral inclusions which did not dissolve following shock treatments and were less able to fuse together. This suggests that nucleozin hardens the material properties of viral inclusions by increasing interactions between vRNPs.

The team also showed that nucleozin stiffened viral inclusions in the lung cells of mice infected with influenza A virus, and helped speed up the mice’s recovery. Furthermore, nucleozin did not alter the level of other proteins in the cells of the mice, demonstrating the drug’s specificity against the virus.

In summary, Etibor et al. revealed how different factors influence the material properties of viral inclusions in both cells and mice infected with influenza A virus. Their findings suggest that stabilizing vRNP interactions shows the most promise for disrupting the function of viral inclusions, and highlight the potential of antiviral drugs that harden these condensates.

References

Article and author information

Author details

  1. Billy Wai-Lung Ng

    Billy Wai-Lung Ng is in the School of Pharmacy and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong

    For correspondence
    billyng@cuhk.edu.hk
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2892-6318
  2. Stephan Scheeff

    Stephan Scheeff is in the School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7791-9670
  3. Josefina Xeque Amada

    Josefina Xeque Amada is in the School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0008-6847-7725

Publication history

  1. Version of Record published: April 28, 2023 (version 1)

Copyright

© 2023, Ng et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 593
    views
  • 55
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Billy Wai-Lung Ng
  2. Stephan Scheeff
  3. Josefina Xeque Amada
(2023)
Viral Condensates: Making it hard to replicate
eLife 12:e88044.
https://doi.org/10.7554/eLife.88044
  1. Further reading

Further reading

    1. Microbiology and Infectious Disease
    Guoqi Li, Xiaohong Cao ... Shihua Wang
    Research Article

    The target of rapamycin (TOR) signaling pathway is highly conserved and plays a crucial role in diverse biological processes in eukaryotes. Despite its significance, the underlying mechanism of the TOR pathway in Aspergillus flavus remains elusive. In this study, we comprehensively analyzed the TOR signaling pathway in A. flavus by identifying and characterizing nine genes that encode distinct components of this pathway. The FK506-binding protein Fkbp3 and its lysine succinylation are important for aflatoxin production and rapamycin resistance. The TorA kinase plays a pivotal role in the regulation of growth, spore production, aflatoxin biosynthesis, and responses to rapamycin and cell membrane stress. As a significant downstream effector molecule of the TorA kinase, the Sch9 kinase regulates aflatoxin B1 (AFB1) synthesis, osmotic and calcium stress response in A. flavus, and this regulation is mediated through its S_TKc, S_TK_X domains, and the ATP-binding site at K340. We also showed that the Sch9 kinase may have a regulatory impact on the high osmolarity glycerol (HOG) signaling pathway. TapA and TipA, the other downstream components of the TorA kinase, play a significant role in regulating cell wall stress response in A. flavus. Moreover, the members of the TapA-phosphatase complexes, SitA and Ppg1, are important for various biological processes in A. flavus, including vegetative growth, sclerotia formation, AFB1 biosynthesis, and pathogenicity. We also demonstrated that SitA and Ppg1 are involved in regulating lipid droplets (LDs) biogenesis and cell wall integrity (CWI) signaling pathways. In addition, another phosphatase complex, Nem1/Spo7, plays critical roles in hyphal development, conidiation, aflatoxin production, and LDs biogenesis. Collectively, our study has provided important insight into the regulatory network of the TOR signaling pathway and has elucidated the underlying molecular mechanisms of aflatoxin biosynthesis in A. flavus.

    1. Microbiology and Infectious Disease
    Brian G Vassallo, Noemie Scheidel ... Dennis H Kim
    Research Article

    The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.