Table 2. | Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence

Open accessCopyright infoDownload PDFDownload figuresRelated content

Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence

Table 2.

Affiliation details

Joslin Diabetes Center, United States; Harvard Medical School, United States; Boston University, United States
Table 2.

Stress resistance assays

DOI: http://dx.doi.org/10.7554/eLife.07836.005

SetStrainMean survival ± SEM (hrs)Median survival (hrs)75th % survival (hrs)N% Mean survival Ext.p value
AS (day 1 adulthood) 25°C continuous; RNAi from L1
 #1N2 + vector RNAi20.20 ± 1.022.522.5122/122
N2 + rme-2 RNAi39.51 ± 1.147.547.5117/11795.59<0.0001*
 #2N2 + vector RNAi26.82 ± 1.228.028.057/57
N2 + rme-2 RNAi53.21 ± 0.952.571.5252/25298.44<0.0001*
glp-1(bn18ts) + vector RNA53.06 ± 1.052.571.5216/21697.85<0.0001*
 #3N2 + vector RNAi (20°C)38.59 ± 0.647.547.5281/281
N2 + rme-2 RNAi63.00 ± 0.771.571.5287/28763.25<0.0001*
 #4N2 + vector RNAi (20°C)49.10 ± 0.846.064.0306/306
N2 + vector/skn-1 mix RNAi32.03 ± 0.640.040.0271/271
N2 + vector/rme-2 mix RNAi65.38 ± 1.164.070.0361/36133.16<0.0001*
N2 + rme-2/skn-1 mix RNAi33.76 ± 0.540.040.0409/4095.40<0.0001‡
two-way ANOVA rme-2 and skn-1 interaction<0.0001
 #5N2 + vector RNAi23.18 ± 0.522.522.5125/125
N2 + lipl-3 RNAi23.04 ± 0.622.528.0139/139
N2 + sbp-1 RNAi11.01 ± 0.67.522.5163/163
N2 + skn-1 RNAi20.88 ± 0.722.528.0115/115
glp-1(bn18ts) + vector RNAi40.58 ± 1.147.547.5105/10575.05<0.0001*
glp-1(bn18ts) + lipl-3 RNAi28.52 ± 1.028.032.5178/17823.77<0.0001†
glp-1(bn18ts) + sbp-1 RNAi7.50 ± 0.56.07.5138/138−31.88<0.0001†
glp-1(bn18ts) + skn-1 RNAi12.90 ± 0.99.022.5129/129−38.21<0.0001†
glp-1(ts) and lipl-3 interaction<0.0001
glp-1(ts) and sbp-1 interaction<0.0001
glp-1(ts) and skn-1 interaction<0.0001
 #6N2 + vector RNAi24.36 ± 0.822.528.0121/121
N2 + fat-6/7 mix RNAi15.56 ± 0.822.522.5159/159
N2 + skn-1 RNAi20.94 ± 0.622.522.5124/124
glp-1(bn18ts) + vector RNAi38.49 ± 1.547.547.598/9858.03<0.0001*
glp-1(bn18ts) + fat-6/7 mix RNAi12.04 ± 0.79.022.5153/153−22.66<0.0001†
glp-1(bn18ts) + skn-1 RNAi23.69 ± 0.928.032.5116/11613.13<0.0001†
glp-1(ts) and fat-6/7 interaction<0.0001
glp-1(ts) and skn-1 interaction<0.0001
AS (day 3 adulthood) 25°C during development, 20°C from D1; RNAi from D1
 #7N2 + vector RNAi6.55 ± 0.37.08.0104/104
N2 + skn-1 RNAi5.08 ± 0.25.07.0103/103
glp-1(bn18ts) + vector RNAi19.36 ± 0.119.020.097/97195.57<0.0001*
glp-1(bn18ts) + skn-1 RNAi7.86 ± 0.48.012.0100/10054.72<0.0001†
glp-1(ts) and skn-1 interaction<0.0001
 #8N2 + vector RNAi8.31 ± 0.49.010.098/98
N2 + skn-1 RNAi6.89 ± 0.38.09.090/90
glp-1(bn18ts) + vector RNAi16.95 ± 1.020.026.081/81103.97<0.0001*
glp-1(bn18ts) + skn-1 RNAi9.90 ± 0.410.012.091/9143.69<0.0001†
glp-1(ts) and skn-1 interaction<0.0001
TBHP (day 3 adulthood) 25°C during development, 20°C from D1; RNAi from D1
 #9N2 + vector RNAi9.02 ± 0.39.011.084/108
N2 + skn-1 RNAi6.16 ± 0.26.07.063/98
glp-1(bn18ts) + vector RNAi11.62 ± 0.311.013.061/6128.82<0.0001*
glp-1(bn18ts) + skn-1 RNAi6.48 ± 0.18.07.063/655.19<0.0001†
glp-1(ts) and skn-1 interaction<0.0001
 #10N24.29 ± 0.24.04.065/94
skn-1(zu135)4.51 ± 0.15.03.073/74
glp-1(bn18ts)6.25 ± 0.26.04.073/7445.69<0.0001*
glp-1(bn18ts);skn-1(zu135)4.78 ± 0.15.04.073/755.99<0.0001†
glp-1(ts) and skn-1 interaction<0.0001
  • Survival after sodium arsenite (AS) or tert-butyl hydroperoxide (TBHP) treatment was assayed in adult animals. The increase in oxidative stress resistance of glp-1(ts) germline stem cell (GSC(−)) animals was impaired by loss of fat-6/7, lipl-3, sbp-1, and skn-1. Representative assays are shown. Percent survival extension refers to glp-1(ts) or rme-2 RNAi vs the matching wild type or skn-1 control. p values were calculated by log-rank test. Symbols denote effect relative to N2*, glp-1(ts)†, or rme-2 RNAi‡. The interaction effect of GSC(−) or rme-2 with skn-1, or fat-6/7, lipl-3, and sbp-1 were calculated by two-way ANOVA using mean lifespan. The last p value reflects the specific requirement of each gene for GSC(−) or rme-2 stress resistance as opposed to its effect on stress resistance in general.