1. Duncan T Odom  Is a corresponding author
  1. University of Cambridge, United Kingdom

There is an old saying in computational circles that researchers in bioinformatics would rather use someone else’s toothbrush than use someone else’s code. One example of this adage being true can be seen in previous attempts to compare the rates at which differences in the mechanisms that control DNA accumulate in different species and lineages.

The information contained in DNA is first accessed by dedicated proteins called transcription factors (TF) that bind to preferred sequence of bases in the DNA. This sequence is typically short, between 8 and 20 bases in length (Vaquerizas et al., 2009), although some can be as long as 35 bases (Filippova et al., 1996). After transcription factor binding has taken place, the basal transcription machinery and its associated complexes open the region’s chromatin and begin transcribing DNA into RNA. These crude transcripts must undergo extensive processing and maturation before they can be exported to the cytoplasm as mature messenger RNA (mRNA). Understanding the rate at which all these steps (notably transcription factor binding and the production of mRNA) change during evolution is a long-standing goal in genetics (Wray, 2007; Wittkopp and Kalay, 2012).

Technically, it is (relatively) easy to map all the contacts between the transcription factors and the DNA, and also to map all the mRNA molecules, in a biological sample using high-throughput sequencing technologies. A number of research groups have compared the amount of transcription factor binding in many species of flies and mammals (He et al., 2011; Paris et al., 2013; Schmidt et al., 2010; Ballester et al., 2014). Based on this work it seemed as if transcription factor binding evolved rapidly in mammalian tissues (Weirauch and Hughes, 2010), but only very slowly in fruit flies (He et al., 2011). However, it can be difficult to compare the first results generated in an entirely novel field of study because different groups often use very different approaches. And in this case this difficulty is further compounded by the toothbrush issue.

Now, in eLife, Trey Ideker and colleagues at the University of California San Diego – including Anne-Ruxandra Carvunis, Tina Wang and Dylan Skola as joint first authors – report that they used a new analysis pipeline to study the raw data for more than 25 species of complex eukaryotes across three animal lineages (mammals, birds and insects) that previously had only been studied in isolation (Carvunis et al., 2015). In other words, they have cleaned everyone’s teeth with the same toothbrush. Moreover, their pipeline could be tweaked to vary the analysis parameters for all the datasets across three lineages at once, thus allowing them to make like-with-like comparisons.

This intellectual scrubbing resulted in two major insights. First, it appears that transcription factor binding (which dictates the function of the genome) and mRNA both evolve at a shared (and perhaps even fundamental) rate in complex eukaryotes. This result is somewhat surprising since most evolutionary geneticists think that the mechanisms that influence genome or functional evolution for the lineages studied by Carvunis et al. are radically different.

Second, particularly in mammals, the evolution of the genome sequence en masse is much more rapid than the evolution of transcription factor binding and transcription. This disconnect may be linked to the instability of the large number largely-silent repeat elements in mammalian genomes, and/or to the fact that insects and birds have more stable genomes.

Moreover, Carvunis et al. have powerfully demonstrated why it is important for all of us in the functional genomics community to meticulously curate our raw data and to make it readily available for others to analyse. None of the insights reported in this work would have been possible without easy access to carefully annotated sequencing reads from the original studies.

References

Article and author information

Author details

  1. Duncan T Odom, Reviewing Editor

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    Duncan.Odom@cruk.cam.ac.uk
    Competing interests
    The author declares that no competing interests exist.

Publication history

  1. Version of Record published: February 11, 2016 (version 1)

Copyright

© 2016, Odom

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,566
    views
  • 179
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Duncan T Odom
(2016)
Comparative Genomics: One for all
eLife 5:e14150.
https://doi.org/10.7554/eLife.14150
  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.