Embryonic Development: The evolution of hearing and balance
The ear is an organ with two main roles – hearing and balance – and it relies on mechanically sensitive hair cells to perform both jobs. When the ear detects a sound, it sends signals to clusters of neurons called the brainstem auditory nuclei, and when it registers movement of the head, it sends signals to the brainstem vestibular nuclei. The vestibular nuclei are remarkably similar among vertebrates, from fish to humans (Fritzsch et al., 2014). However, the auditory nuclei display considerable diversity across species. For example, birds and mammals both have a pathway that uses the difference in the time of arrival of a sound at each ear to determine where the noise came from. However, this circuit works differently in these two groups of animals, suggesting that it may have emerged independently multiple times during evolution (Grothe and Pecka, 2014). How, then, did the modern auditory and vestibular nuclei arise?
One strategy to address this question is to explore the embryonic development of vertebrates. Nuclei in the brainstem arise from the embryonic hindbrain, which is remarkably similar across vertebrate species and is divided into segments called rhombomeres (Di Bonito and Studer, 2017). Fate mapping studies have been used to test whether cells in the auditory and vestibular nuclei of different vertebrate species derive from the same rhombomeres.
In this technique, embryonic tissue can be labeled with an external marker, such as a dye (for traditional fate mapping), or a fluorescent protein marker (for genetic fate mapping), in order to track the destination of the cells arising from that tissue (Stern and Fraser, 2001; Legué and Joyner, 2010). Previously, traditional fate mapping has been limited to research in birds (which have accessible embryos), while genetic fate mapping has been limited to mammals (which have accessible genomes; Cramer et al., 2000; Marín and Puelles, 1995; Kim and Dymecki, 2009).
However, both approaches have technical caveats and they identify progenitors in different ways, which hinders their direct comparison. Traditional fate mapping identifies the fate of all labeled cells within a restricted area of the embryo, which may contain a range of progenitor cell types. In contrast, genetic fate mapping marks only cells that express a certain gene (or genes), but these cells can come from a wider area within the embryo.
Now, in eLife, Marcela Lipovsek and Richard Wingate of King’s College London report how they have addressed this dilemma by using vector-based genetic fate mapping in chick embryos (Lipovsek and Wingate, 2018). The researchers focused on genes that were only active in certain regions of the embryonic hindbrain. Plasmid vectors were used to label cells with a fluorescent protein after specific genes in those cells were active. This way, the fate of cells along two anatomical axes (from head to tail, and from back to belly) could be traced. Lipovsek and Wingate studied the same genes that were previously used to construct genetic fate maps of brainstem nuclei in mice, which enabled them to draw direct comparisons between birds and mammals for the first time (Di Bonito and Studer, 2017).
Their results confirmed that vestibular nuclei have similar embryonic origins in chicks and mice. In contrast, auditory nuclei that have comparable roles in chicks and mice arise from completely different embryonic tissues. This suggests that birds and mammals used different populations of ancestral cells – often from different rhombomeres – to independently evolve circuits for calculating sound location.
Lipovsek and Wingate provide compelling evidence that the anatomical similarities between vestibular nuclei in birds and mammals are due to common developmental and evolutionary origins. And since their vestibular systems are also homologous to those of fish, it seems that the role of the vestibular organ remained relatively unaffected by our aquatic ancestors’ move to land (Fritzsch et al., 2014). Conversely, the different developmental origins of auditory nuclei in birds and mammals reflect how each clade solved the problem of hearing on land by adapting to its own ecological niche (Carr and Christensen-Dalsgaard, 2016).
References
-
Evolutionary trends in directional hearingCurrent Opinion in Neurobiology 40:111–117.https://doi.org/10.1016/j.conb.2016.07.001
-
Embryonic origins of auditory brain-stem nuclei in the chick hindbrainDevelopmental Biology 224:138–151.https://doi.org/10.1006/dbio.2000.9779
-
BookDevelopment of the mammalian ‘vestibular’ system: evolution of form to detect angular and gravity accelerationIn: Romand R, Varela-Nieto I, editors. Development of Auditory and Vestibular Systems. San Diego: Academic Press. pp. 339–367.https://doi.org/10.1016/B978-0-12-408088-1.00012-9
-
The natural history of sound localization in mammals – a story of neuronal inhibitionFrontiers in Neural Circuits 8:116.https://doi.org/10.3389/fncir.2014.00116
-
BookGenetic fate-mapping approaches: new means to explore the embryonic origins of the cochlear nucleusIn: Sokolowski B, editors. Auditory and Vestibular Research. Humana Press. pp. 65–85.https://doi.org/10.1007/978-1-59745-523-7_5
-
Genetic fate mapping using site-specific recombinasesMethods in Enzymology 477:153–181.https://doi.org/10.1016/S0076-6879(10)77010-5
-
Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nucleiEuropean Journal of Neuroscience 7:1714–1738.https://doi.org/10.1111/j.1460-9568.1995.tb00693.x
-
Tracing the lineage of tracing cell lineagesNature Cell Biology 3:E216–E218.https://doi.org/10.1038/ncb0901-e216
Article and author information
Author details
Publication history
Copyright
© 2019, Weghorst and Cramer
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,851
- views
-
- 197
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.
-
- Developmental Biology
Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.