Extracellular Matrix: Sculpting new structures

The origins of the posterior lobe, a recently evolved structure in some species of Drosophila, have become clearer.
  1. Jocelyn A McDonald  Is a corresponding author
  2. Yoshinori Tomoyasu
  1. Division of Biology, Kansas State University, United States
  2. Department of Biology, Miami University, United States

A key question in modern evolutionary developmental biology (evo-devo) is how new forms and structures evolve during organism development, especially those not derived from pre-existing ones. New structures can arise through various mechanisms, including gene co-option (using a pre-existing gene for a new purpose), or the acquisition of new genes (Carroll, 2008). However, to date evo-devo studies have tended to focus on the genetic regulation of these processes, and have paid relatively less attention to the cellular and extracellular processes that physically shape these new forms and structures during development.

The posterior lobe of some species of Drosophila fruit flies – a wedge-shaped outgrowth of the male genitalia that has a role in mating – is an example of a new structure that has evolved recently (Figure 1; Frazee and Masly, 2015). The lobe originates from a tissue called the lateral plate and is next to the claspers (a structure that helps males attach to females during mating). The lobe, which comes in various shapes and sizes, is only found in some species of the melanogaster subgroup of flies, including D. melanogaster and D. sechellia (Yassin and Orgogozo, 2013). The evolution of the lobe was made possible by co-opting the gene network that controls the development of a respiratory opening called the larval spiracle into genital development (Glassford et al., 2015). However, several questions remain unanswered: how does the posterior lobe take shape during development? And how does the development of genitalia in species with a lobe differ from that in species that do not have a lobe? Now, in eLife, Sarah Jacquelyn Smith, Lance Davidson and Mark Rebeiz from the University of Pittsburgh report the results of experiments on four different species of flies – two with lobes and two without – that shed light on these questions (Smith et al., 2020).

The emergence of the posterior lobe in some species of Drosophila.

(A) Phylogenetic tree showing the relationship between four Drosophila species. The posterior lobe is a projection (indicated by a teal arrow) from the lateral plate that first appeared in the common ancestor of D. sechellia and D. melanogaster. The lobe is not found in D. biarmipes or D. ananassae; asterisk indicates the position on the lateral plate corresponding to the position of the lobe in the other two species. (B) In D. sechellia and D. melanogaster the extracellular matrix (pink) covers the entire apical side (the outer side) of the genitalia, including the elongating posterior lobe (PL) and clasper (C). In D. biarmipes or D. ananassae the matrix does not reach the region corresponding to the lateral plate (LP: asterisk).

Smith et al. started by asking which cellular processes underlie the formation of the posterior lobe (Heisenberg and Bellaïche, 2013). The processes they looked at included cell proliferation, polarized cell intercalation (in which cells from several layers of a tissue 'morph' into a single layer to make the tissue longer and thinner), and apical cell constriction (which involves a cell becoming thinner at one end to give it a wedge-like shape). Surprisingly, none of these processes appear to be major drivers of lobe formation. Instead, the posterior lobe in D. melanogaster extends from the lateral plate through a dramatic increase in cell height. Since the extracellular matrix has been known to shape organs and body parts (Brown, 2011; Tajiri, 2017), Smith et al. decided to explore if it could also drive extension in the posterior lobe.

The extracellular matrix is a mesh-like web that consists of glycoproteins, proteoglycans, and other proteins. A gigantic extracellular matrix protein called Dumpy determines the shape of tissues in D. melanogaster by anchoring them to the cuticle of the larva or pupa (Etournay et al., 2015; Ray et al., 2015; Wilkin et al., 2000). Smith et al. found that, in lobed species, extracellular matrix containing Dumpy covers the majority of the apical side of male genitalia including the posterior lobe as it forms (Figure 1B). In non-lobed species, however, this extracellular matrix does not cover the lateral plate. These results are consistent with the finding that lobed species express a broader pattern of Dumpy mRNA in the lateral plate and future posterior lobe. Furthermore, when Smith et al. used RNA interference to disrupt the deposition of Dumpy in the future lobe, the height of the lobe decreased in a dose-dependent manner. Thus, the amount of Dumpy in the extracellular matrix determines the shape and height of the lobe. Moreover, the extracellular matrix that associates with the lobe does not appear to directly interact with the cuticle, suggesting a new role for Dumpy during lobe formation that is independent from anchoring to the cuticle.

Several questions remain about the development and evolution of the posterior lobe. First, if Dumpy is not anchoring the lobe to the cuticle, how does the extracellular matrix containing Dumpy promote the formation of the posterior lobe? Smith et al. provide three likely scenarios: (i) Dumpy provides a structural support that helps the lobe cells elongate; (ii) the extracellular matrix mechanically pulls the lobe cells; or (iii) the extracellular matrix alters cell signaling activity during lobe development. Secondly, it is unknown whether Dumpy deposition determines the widely different posterior lobe shapes found in closely related species of the melanogaster group (Figure 1A). It is also unknown whether the apical extracellular matrix, via Dumpy or other matrix proteins, helps form the rudimentary lobe-like structures found in sister species such as D. yakuba and others (Glassford et al., 2015; Yassin and Orgogozo, 2013).

The finding that changes in the extracellular matrix can influence the evolution of the shape of tissues and organs has wide implications in evolutionary biology. Since this role for the extracellular matrix is one of the last steps in organ formation, ‘tweaking’ this step likely has an immediate effect on organ and tissue shapes without affecting the viability of organisms. Therefore, this step may be a hotspot for the evolution of cell and tissue shapes, including the evolution of new structures. The results of Smith et al. suggest new ways in which the extracellular matrix and other extracellular factors may have evolved to sculpt various new structures during development.

References

Article and author information

Author details

  1. Jocelyn A McDonald

    Jocelyn A McDonald is in the Division of Biology, Kansas State University, Manhattan, United States

    For correspondence
    jmcdona@ksu.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7494-1466
  2. Yoshinori Tomoyasu

    Yoshinori Tomoyasu is in the Department of Biology, Miami University, Oxford, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9824-3454

Publication history

  1. Version of Record published:

Copyright

© 2020, McDonald and Tomoyasu

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 887
    views
  • 75
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jocelyn A McDonald
  2. Yoshinori Tomoyasu
(2020)
Extracellular Matrix: Sculpting new structures
eLife 9:e57668.
https://doi.org/10.7554/eLife.57668

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kazuya Ono, Amandine Jarysta ... Basile Tarchini
    Research Article

    Otolith organs in the inner ear and neuromasts in the fish lateral-line harbor two populations of hair cells oriented to detect stimuli in opposing directions. The underlying mechanism is highly conserved: the transcription factor EMX2 is regionally expressed in just one hair cell population and acts through the receptor GPR156 to reverse cell orientation relative to the other population. In mouse and zebrafish, loss of Emx2 results in sensory organs that harbor only one hair cell orientation and are not innervated properly. In zebrafish, Emx2 also confers hair cells with reduced mechanosensory properties. Here, we leverage mouse and zebrafish models lacking GPR156 to determine how detecting stimuli of opposing directions serves vestibular function, and whether GPR156 has other roles besides orienting hair cells. We find that otolith organs in Gpr156 mouse mutants have normal zonal organization and normal type I-II hair cell distribution and mechano-electrical transduction properties. In contrast, gpr156 zebrafish mutants lack the smaller mechanically evoked signals that characterize Emx2-positive hair cells. Loss of GPR156 does not affect orientation-selectivity of afferents in mouse utricle or zebrafish neuromasts. Consistent with normal otolith organ anatomy and afferent selectivity, Gpr156 mutant mice do not show overt vestibular dysfunction. Instead, performance on two tests that engage otolith organs is significantly altered – swimming and off-vertical-axis rotation. We conclude that GPR156 relays hair cell orientation and transduction information downstream of EMX2, but not selectivity for direction-specific afferents. These results clarify how molecular mechanisms that confer bi-directionality to sensory organs contribute to function, from single hair cell physiology to animal behavior.

    1. Developmental Biology
    Huishan Wang, Xingyan Liu ... Pengcheng Ma
    Research Article

    The spatial and temporal linear expression of Hox genes establishes a regional Hox code, which is crucial for the antero-posterior (A-P) patterning, segmentation, and neuronal circuit development of the hindbrain. RNF220, an E3 ubiquitin ligase, is widely involved in neural development via targeting of multiple substrates. Here, we found that the expression of Hox genes in the pons was markedly up-regulated at the late developmental stage (post-embryonic day E15.5) in Rnf220-/- and Rnf220+/- mouse embryos. Single-nucleus RNA sequencing (RNA-seq) analysis revealed different Hox de-repression profiles in different groups of neurons, including the pontine nuclei (PN). The Hox pattern was disrupted and the neural circuits were affected in the PN of Rnf220+/- mice. We showed that this phenomenon was mediated by WDR5, a key component of the TrxG complex, which can be polyubiquitinated and degraded by RNF220. Intrauterine injection of WDR5 inhibitor (WDR5-IN-4) and genetic ablation of Wdr5 in Rnf220+/- mice largely recovered the de-repressed Hox expression pattern in the hindbrain. In P19 embryonal carcinoma cells, the retinoic acid-induced Hox expression was further stimulated by Rnf220 knockdown, which can also be rescued by Wdr5 knockdown. In short, our data suggest a new role of RNF220/WDR5 in Hox pattern maintenance and pons development in mice.