Visceral organ morphogenesis via calcium-patterned muscle constrictions

  1. Noah P Mitchell
  2. Dillon J Cislo
  3. Suraj Shankar
  4. Yuzheng Lin
  5. Boris I Shraiman
  6. Sebastian J Streichan  Is a corresponding author
  1. University of California, Santa Barbara, United States

Abstract

Organ architecture is often composed of multiple laminar tissues arranged in concentric layers. During morphogenesis, the initial geometry of visceral organs undergoes a sequence of folding, adopting a complex shape that is vital for function. Genetic signals are known to impact form, yet the dynamic and mechanical interplay of tissue layers giving rise to organs' complex shapes remains elusive. Here, we trace the dynamics and mechanical interactions of a developing visceral organ across tissue layers, from sub-cellular to organ scale in vivo. Combining deep tissue light-sheet microscopy for in toto live visualization with a novel computational framework for multilayer analysis of evolving complex shapes, we find a dynamic mechanism for organ folding using the embryonic midgut of Drosophila as a model visceral organ. Hox genes, known regulators of organ shape, control the emergence of high-frequency calcium pulses. Spatiotemporally patterned calciumpulses triggermuscle contractions via myosin light chain kinase. Muscle contractions, in turn, induce cell shape change in the adjacent tissue layer. This cell shape change collectively drives a convergent extension pattern. Through tissue incompressibility and initial organ geometry, this in-plane shape change is linked to out-of-plane organ folding. Our analysis follows tissue dynamics during organ shape change in vivo, tracing organ-scale folding to a high-frequency molecular mechanism. These findings offer a mechanical route for gene expression to induce organ shape change: genetic patterning in one layer triggers a physical process in the adjacent layer - revealing post-translational mechanisms that govern shape change.

Data availability

We have uploaded processed data for experiments spanning all figures to FigShare, available at https://figshare.com/authors/Noah_Mitchell/12456507 in project #137793: 'Visceral organ morphogenesis via calcium-patterned constrictions'. The original volumetric data from living imaging are each up to a terabyte in size. We therefore posted processed data on FigShare, including 2D pullback image sequences of the dynamic 3D tissue surfaces, volumetric data for small datasets, and processed tables. An interested researcher would be able to access the original data on our lab server. They would need to contact Sebastian Streichan (streicha@ucsb.edu) to be added to the server's list of users and could then download the original data directly.In addition to the TubULAR package detailed in reference 32, further software and scripts used to analyze the data is available at: https://github.com/npmitchell/VisceralOrganMorphogenesisViaCalciumPatternedMuscleConstrictions.

The following data sets were generated

Article and author information

Author details

  1. Noah P Mitchell

    Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dillon J Cislo

    Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Suraj Shankar

    Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4615-975X
  4. Yuzheng Lin

    Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Boris I Shraiman

    Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0886-8990
  6. Sebastian J Streichan

    Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
    For correspondence
    streicha@ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6105-9087

Funding

National Institutes of Health (R35 GM138203)

  • Sebastian J Streichan

National Institutes of Health (R00 294 HD088708)

  • Sebastian J Streichan

Helen Hay Whitney Foundation (F-1246)

  • Noah P Mitchell

National Science Foundation (PHY-1748958)

  • Boris I Shraiman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michel Bagnat, Duke University, United States

Publication history

  1. Received: January 26, 2022
  2. Accepted: May 8, 2022
  3. Accepted Manuscript published: May 20, 2022 (version 1)

Copyright

© 2022, Mitchell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 647
    Page views
  • 257
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noah P Mitchell
  2. Dillon J Cislo
  3. Suraj Shankar
  4. Yuzheng Lin
  5. Boris I Shraiman
  6. Sebastian J Streichan
(2022)
Visceral organ morphogenesis via calcium-patterned muscle constrictions
eLife 11:e77355.
https://doi.org/10.7554/eLife.77355
  1. Further reading

Further reading

    1. Developmental Biology
    Spenser S Smith et al.
    Research Article Updated

    Precise developmental control of jaw length is critical for survival, but underlying molecular mechanisms remain poorly understood. The jaw skeleton arises from neural crest mesenchyme (NCM), and we previously demonstrated that these progenitor cells express more bone-resorbing enzymes including Matrix metalloproteinase 13 (Mmp13) when they generate shorter jaws in quail embryos versus longer jaws in duck. Moreover, if we inhibit bone resorption or Mmp13, we can increase jaw length. In the current study, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of and sensitivity to transforming growth factor beta (TGFβ) signaling than duck; where intracellular mediators like SMADs and targets like Runt-related transcription factor 2 (Runx2), which bind Mmp13, become elevated. Inhibiting TGFβ signaling decreases bone resorption, and overexpressing Mmp13 in NCM shortens the duck lower jaw. To elucidate the basis for this differential regulation, we examine the Mmp13 promoter. We discover a SMAD-binding element and single nucleotide polymorphisms (SNPs) near a RUNX2-binding element that distinguish quail from duck. Altering the SMAD site and switching the SNPs abolish TGFβ sensitivity in the quail Mmp13 promoter but make the duck promoter responsive. Thus, differential regulation of TGFβ signaling and Mmp13 promoter structure underlie avian jaw development and evolution.

    1. Developmental Biology
    2. Evolutionary Biology
    Katelyn Mika et al.
    Research Advance

    Structural and physiological changes in the female reproductive system underlie the origins of pregnancy in multiple vertebrate lineages. In mammals, the glandular portion of the lower reproductive tract has transformed into a structure specialized for supporting fetal development. These specializations range from relatively simple maternal nutrient provisioning in egg-laying monotremes to an elaborate suite of traits that support intimate maternal-fetal interactions in Eutherians. Among these traits are the maternal decidua and fetal component of the placenta, but there is considerable uncertainty about how these structures evolved. Previously we showed that changes in uterine gene expression contributes to several evolutionary innovations during the origins of pregnancy (Marinic, Mika, and Lynch 2021). Here we reconstruct the evolution of entire transcriptomes ('ancestral transcriptome reconstruction') and show that maternal gene expression profiles are correlated with degree of placental invasion. These results indicate that an epitheliochorial-like placenta evolved early in the mammalian stem-lineage and that the ancestor of Eutherians had a hemochorial placenta, and suggest maternal control of placental invasiveness. These data resolve major transitions in the evolution of pregnancy and indicate that ancestral transcriptome reconstruction can be used to study the function of ancestral cell, tissue, and organ systems.