The spatiotemporal patterns of major human admixture events during the European Holocene

  1. Manjusha Chintalapati  Is a corresponding author
  2. Nick Patterson  Is a corresponding author
  3. Priya Moorjani  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Broad Institute, United States

Abstract

Recent studies have shown that admixture has been pervasive throughout human history. While several methods exist for dating admixture in contemporary populations, they are not suitable for sparse, low coverage ancient genomic data. Thus, we developed DATES that leverages ancestry covariance patterns across the genome of a single individual to infer the timing of admixture. DATES provides reliable estimates under various demographic scenarios and outperforms available methods for ancient DNA applications. Using DATES on ~1,100 ancient genomes, we reconstruct major gene flow events during European Holocene. By studying the genetic formation of Anatolian farmers, we infer that gene flow related to Iranian Neolithic farmers occurred before 9,600 BCE, predating the advent of agriculture in Anatolia. Contrary to the archaeological evidence, we estimate that early Steppe pastoralist groups (Yamnaya and Afanasievo) were genetically formed more than a millennium before the start of steppe pastoralism. Using time transect samples across sixteen regions, we provide a fine-scale chronology of the Neolithization of Europe and the rapid spread of Steppe pastoralist ancestry across Europe. Our analyses provide new insights on the origins and spread of farming and Indo-European languages, highlighting the power of genomic dating methods to elucidate the legacy of human migrations.

Data availability

All data analyzed during this study is publicly available at: https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data

Article and author information

Author details

  1. Manjusha Chintalapati

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    m_chintalapati@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Nick Patterson

    Program in Medical and Population Genetics, Broad Institute, Cambridge, United States
    For correspondence
    nickp@broadinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
  3. Priya Moorjani

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    moorjani@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0947-5673

Funding

National Institutes of Health (R35GM142978)

  • Priya Moorjani

Burroughs Wellcome Fund (Career Award at the Scientific Interface)

  • Priya Moorjani

Alfred P. Sloan Foundation (Sloan Research Fellowship)

  • Priya Moorjani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. George H Perry, Pennsylvania State University, United States

Publication history

  1. Received: February 5, 2022
  2. Accepted: May 29, 2022
  3. Accepted Manuscript published: May 30, 2022 (version 1)

Copyright

© 2022, Chintalapati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,270
    Page views
  • 689
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manjusha Chintalapati
  2. Nick Patterson
  3. Priya Moorjani
(2022)
The spatiotemporal patterns of major human admixture events during the European Holocene
eLife 11:e77625.
https://doi.org/10.7554/eLife.77625

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Tianzhu Xiong et al.
    Research Article Updated

    Hybridization is a major evolutionary force that can erode genetic differentiation between species, whereas reproductive isolation maintains such differentiation. In studying a hybrid zone between the swallowtail butterflies Papilio syfanius and Papilio maackii (Lepidoptera: Papilionidae), we made the unexpected discovery that genomic substitution rates are unequal between the parental species. This phenomenon creates a novel process in hybridization, where genomic regions most affected by gene flow evolve at similar rates between species, while genomic regions with strong reproductive isolation evolve at species-specific rates. Thus, hybridization mixes evolutionary rates in a way similar to its effect on genetic ancestry. Using coalescent theory, we show that the rate-mixing process provides distinct information about levels of gene flow across different parts of genomes, and the degree of rate-mixing can be predicted quantitatively from relative sequence divergence (FST) between the hybridizing species at equilibrium. Overall, we demonstrate that reproductive isolation maintains not only genomic differentiation, but also the rate at which differentiation accumulates. Thus, asymmetric rates of evolution provide an additional signature of loci involved in reproductive isolation.

    1. Developmental Biology
    2. Evolutionary Biology
    Katelyn Mika et al.
    Research Advance

    Structural and physiological changes in the female reproductive system underlie the origins of pregnancy in multiple vertebrate lineages. In mammals, the glandular portion of the lower reproductive tract has transformed into a structure specialized for supporting fetal development. These specializations range from relatively simple maternal nutrient provisioning in egg-laying monotremes to an elaborate suite of traits that support intimate maternal-fetal interactions in Eutherians. Among these traits are the maternal decidua and fetal component of the placenta, but there is considerable uncertainty about how these structures evolved. Previously we showed that changes in uterine gene expression contributes to several evolutionary innovations during the origins of pregnancy (Marinic, Mika, and Lynch 2021). Here we reconstruct the evolution of entire transcriptomes ('ancestral transcriptome reconstruction') and show that maternal gene expression profiles are correlated with degree of placental invasion. These results indicate that an epitheliochorial-like placenta evolved early in the mammalian stem-lineage and that the ancestor of Eutherians had a hemochorial placenta, and suggest maternal control of placental invasiveness. These data resolve major transitions in the evolution of pregnancy and indicate that ancestral transcriptome reconstruction can be used to study the function of ancestral cell, tissue, and organ systems.