Kinesin-1, -2 and -3 motors use family-specific mechanochemical strategies to effectively compete with dynein during bidirectional transport

  1. Allison M Gicking
  2. Tzu-Chen Ma
  3. Qingzhou Feng
  4. Rui Jiang
  5. Somayesadat Badieyan
  6. Michael A Cianfrocco
  7. William O Hancock  Is a corresponding author
  1. Pennsylvania State University, United States
  2. University of Michigan-Ann Arbor, United States

Abstract

Bidirectional cargo transport in neurons requires competing activity of motors from the kinesin-1, -2 and -3 superfamilies against cytoplasmic dynein-1. Previous studies demonstrated that when kinesin-1 attached to dynein-dynactin-BicD2 (DDB) complex, the tethered motors move slowly with a slight plus-end bias, suggesting kinesin-1 overpowers DDB but DDB generates a substantial hindering load. Compared to kinesin-1, motors from the kinesin-2 and -3 families display a higher sensitivity to load in single-molecule assays and are thus predicted to be overpowered by dynein complexes in cargo transport. To test this prediction, we used a DNA scaffold to pair DDB with members of the kinesin-1, -2 and -3 families to recreate bidirectional transport in vitro, and tracked the motor pairs using two-channel TIRF microscopy. Unexpectedly, we find that when both kinesin and dynein are engaged and stepping on the microtubule, kinesin-1, -2, and -3 motors are able to effectively withstand hindering loads generated by DDB. Stochastic stepping simulations reveal that kinesin-2 and -3 motors compensate for their faster detachment rates under load with faster reattachment kinetics. The similar performance between the three kinesin transport families highlights how motor kinetics play critical roles in balancing forces between kinesin and dynein, and emphasizes the importance of motor regulation by cargo adaptors, regulatory proteins, and the microtubule track for tuning the speed and directionality of cargo transport in cells.

Data availability

Source files are included for all figures and figure supplements.Source code is included for the simulations in Fig. 6.

Article and author information

Author details

  1. Allison M Gicking

    Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9287-2580
  2. Tzu-Chen Ma

    Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qingzhou Feng

    Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rui Jiang

    Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6000-8512
  5. Somayesadat Badieyan

    Department of Biological Chemistry, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael A Cianfrocco

    Department of Biological Chemistry, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2067-4999
  7. William O Hancock

    Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
    For correspondence
    woh1@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5547-8755

Funding

National Institutes of Health (R35GM139568)

  • William O Hancock

National Institutes of Health (R01GM076476)

  • William O Hancock

National Institutes of Health (R21AI152869)

  • Michael A Cianfrocco

National Institutes of Health (F32GM137487)

  • Allison M Gicking

National Institutes of Health (T32GM108563)

  • Rui Jiang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kassandra M Ori-McKenney, University of California, United States

Publication history

  1. Received: July 27, 2022
  2. Accepted: September 19, 2022
  3. Accepted Manuscript published: September 20, 2022 (version 1)

Copyright

© 2022, Gicking et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 124
    Page views
  • 98
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Allison M Gicking
  2. Tzu-Chen Ma
  3. Qingzhou Feng
  4. Rui Jiang
  5. Somayesadat Badieyan
  6. Michael A Cianfrocco
  7. William O Hancock
(2022)
Kinesin-1, -2 and -3 motors use family-specific mechanochemical strategies to effectively compete with dynein during bidirectional transport
eLife 11:e82228.
https://doi.org/10.7554/eLife.82228

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Edmundo G Vides, Ayan Adhikari ... Suzanne R Pfeffer
    Research Advance

    Activating mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) cause Parkinson's disease and previously we showed that activated LRRK2 phosphorylates a subset of Rab GTPases (Steger et al., 2017). Moreover, Golgi-associated Rab29 can recruit LRRK2 to the surface of the Golgi and activate it there for both auto- and Rab substrate phosphorylation. Here we define the precise Rab29 binding region of the LRRK2 Armadillo domain between residues 360-450 and show that this domain, termed 'Site #1', can also bind additional LRRK2 substrates, Rab8A and Rab10. Moreover, we identify a distinct, N-terminal, higher affinity interaction interface between LRRK2 phosphorylated Rab8 and Rab10 termed 'Site #2', that can retain LRRK2 on membranes in cells to catalyze multiple, subsequent phosphorylation events. Kinase inhibitor washout experiments demonstrate that rapid recovery of kinase activity in cells depends on the ability of LRRK2 to associate with phosphorylated Rab proteins, and phosphorylated Rab8A stimulates LRRK2 phosphorylation of Rab10 in vitro. Reconstitution of purified LRRK2 recruitment onto planar lipid bilayers decorated with Rab10 protein demonstrates cooperative association of only active LRRK2 with phospho-Rab10-containing membrane surfaces. These experiments reveal a feed-forward pathway that provides spatial control and membrane activation of LRRK2 kinase activity.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Andrea Volante, Juan Carlos Alonso, Kiyoshi Mizuuchi
    Research Article Updated

    Three-component ParABS partition systems ensure stable inheritance of many bacterial chromosomes and low-copy-number plasmids. ParA localizes to the nucleoid through its ATP-dependent nonspecific DNA-binding activity, whereas centromere-like parS-DNA and ParB form partition complexes that activate ParA-ATPase to drive the system dynamics. The essential parS sequence arrangements vary among ParABS systems, reflecting the architectural diversity of their partition complexes. Here, we focus on the pSM19035 plasmid partition system that uses a ParBpSM of the ribbon-helix-helix (RHH) family. We show that parSpSM with four or more contiguous ParBpSM-binding sequence repeats is required to assemble a stable ParApSM-ParBpSM complex and efficiently activate the ParApSM-ATPase, stimulating complex disassembly. Disruption of the contiguity of the parSpSM sequence array destabilizes the ParApSM-ParBpSM complex and prevents efficient ATPase activation. Our findings reveal the unique architecture of the pSM19035 partition complex and how it interacts with nucleoid-bound ParApSM-ATP.