A comprehensive survey of C. elegans argonaute proteins reveals organism-wide gene regulatory networks and functions
Abstract
Argonaute (AGO) proteins associate with small RNAs to direct their effector function on complementary transcripts. The nematode C. elegans contains an expanded family of 19 functional AGO proteins, many of which have not been fully characterized. In this work we systematically analyzed every C. elegans AGO, using CRISPR-Cas9 genome editing to introduce GFP::3xFLAG tags. We have characterized the expression patterns of each AGO throughout development, identified small RNA binding complements, and determined the effects of ago loss on small RNA populations and developmental phenotypes. Our analysis indicates stratification of subsets of AGOs into distinct regulatory modules, and integration of our data led us to uncover novel stress-induced fertility and pathogen response phenotypes due to ago loss.
Data availability
All high-throughput sequencing data are available through GEO, accession number GSE208702. Custom R scripts are available via GitHub: https://github.com/ClaycombLab/Seroussi_2022. C. elegans strains generated in this study are available through the Caenorhabditis Genetics Center.
-
Data from: Tertiary siRNAs mediate paramutation in C. elegansNCBI Gene Expression Omnibus: GSE66344.
-
Data from: MUT-16 promotes formation of perinuclear Mutator foci required for RNA silencing in the C. elegans germlineN/A Table S3 in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403012/.
-
Data from: A New Dataset of Spermatogenic vs. Oogenic Transcriptomes in the Nematode Caenorhabditis elegansN/A Table S1 in https://academic.oup.com/g3journal/article/4/9/1765/6025966#supplementary-data.
-
Data from: Spatiotemporal Gene Expression Analysis of the Caenorhabditis elegans Germline Uncovers a Syncytial Expression SwitchTable S3 in https://figshare.com/articles/dataset/Supplemental_Material_for_Tzur_et_al_2018/6726293?file=12264290.
Article and author information
Author details
Funding
Canadian Institutes of Health Research (Project Grant,PJT-156083,Bridge Grant,PJG-175378,Project Grant,PJT-178076)
- Julie M Claycomb
Canadian Institutes of Health Research (Project Grant,PJT-400784)
- Aaron W Reinke
Natural Sciences and Engineering Research Council of Canada (Discovery Grant,RGPIN-2020-06235)
- Julie M Claycomb
Alfred P. Sloan Foundation (Research Fellowship,FG2019-12040)
- Aaron W Reinke
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- David E James, University of Sydney, Australia
Publication history
- Received: September 30, 2022
- Accepted: February 14, 2023
- Accepted Manuscript published: February 15, 2023 (version 1)
Copyright
© 2023, Seroussi et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 872
- Page views
-
- 263
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
Histone acetylation is a pivotal epigenetic modification that controls chromatin structure and regulates gene expression. It plays an essential role in modulating zygotic transcription and cell lineage specification of developing embryos. While the outcomes of many inductive signals have been described to require enzymatic activities of histone acetyltransferases and deacetylases (HDACs), the mechanisms by which HDACs confine the utilization of the zygotic genome remain to be elucidated. Here, we show that histone deacetylase 1 (Hdac1) progressively binds to the zygotic genome from mid blastula and onward. The recruitment of Hdac1 to the genome at blastula is instructed maternally. Cis-regulatory modules (CRMs) bound by Hdac1 possess epigenetic signatures underlying distinct functions. We highlight a dual function model of Hdac1 where Hdac1 not only represses gene expression by sustaining a histone hypoacetylation state on inactive chromatin, but also maintains gene expression through participating in dynamic histone acetylation-deacetylation cycles on active chromatin. As a result, Hdac1 maintains differential histone acetylation states of bound CRMs between different germ layers and reinforces the transcriptional program underlying cell lineage identities, both in time and space. Taken together, our study reveals a comprehensive role for Hdac1 during early vertebrate embryogenesis.
-
- Developmental Biology
- Genetics and Genomics
The development of tools to manipulate the mouse genome, including knockout and transgenic technology, has revolutionized our ability to explore gene function in mammals. Moreover, for genes that are expressed in multiple tissues or at multiple stages of development, the use of tissue-specific expression of the Cre recombinase allows gene function to be perturbed in specific cell types and/or at specific times. However, it is well known that putative tissue-specific promoters often drive unanticipated 'off target' expression. In our efforts to explore the biology of the male reproductive tract, we unexpectedly found that expression of Cre in the central nervous system resulted in recombination in the epididymis, a tissue where sperm mature for ~1-2 weeks following the completion of testicular development. Remarkably, we not only observed reporter expression in the epididymis when Cre expression was driven from neuron-specific transgenes, but also when Cre expression in the brain was induced from an AAV vector carrying a Cre expression construct. A surprisingly wide range of Cre drivers - including six different neuronal promoters as well as the adipose-specific Adipoq Cre promoter - exhibited off target recombination in the epididymis, with a subset of drivers also exhibiting unexpected activity in other tissues such as the reproductive accessory glands. Using a combination of parabiosis and serum transfer experiments, we find evidence supporting the hypothesis that Cre may be trafficked from its cell of origin to the epididymis through the circulatory system. Together, our findings should motivate extreme caution when interpreting conditional alleles, and suggest the exciting possibility of inter-tissue RNA or protein trafficking in modulation of reproductive biology.