1. Computational and Systems Biology
  2. Microbiology and Infectious Disease
Download icon

Metabolic interactions between dynamic bacterial subpopulations

  1. Adam Z Rosenthal
  2. Yutao Qi
  3. Sahand Hormoz
  4. Jin Park
  5. Sophia Hsin-Jung Li
  6. Michael B Elowitz  Is a corresponding author
  1. California Institute of Technology, United States
  2. Princeton University, United States
Research Article
  • Cited 0
  • Views 954
  • Annotations
Cite as: eLife 2018;7:e33099 doi: 10.7554/eLife.33099

Abstract

Individual microbial species are known to occupy distinct metabolic niches within multi-species communities. However, it has remained largely unclear whether metabolic specialization can similarly occur within a clonal bacterial population. More specifically, it is not clear what functions such specialization could provide and how specialization could be coordinated dynamically. Here, we show that exponentially growing Bacillus subtilis cultures divide into distinct interacting metabolic subpopulations, including one population that produces acetate, and another population that differentially expresses metabolic genes for the production of acetoin, a pH-neutral storage molecule. These subpopulations exhibit distinct growth rates and dynamic interconversion between states. Furthermore, acetate concentration influences the relative sizes of the different subpopulations. These results show that clonal populations can use metabolic specialization to control the environment through a process of dynamic, environmentally-sensitive state-switching.

Article and author information

Author details

  1. Adam Z Rosenthal

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon 0000-0002-6936-3665
  2. Yutao Qi

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sahand Hormoz

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jin Park

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sophia Hsin-Jung Li

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon 0000-0001-8972-6921
  6. Michael B Elowitz

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    melowitz@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon 0000-0002-1221-0967

Funding

National Institute for Health Research (RO1GM079771)

  • Adam Z Rosenthal
  • Yutao Qi
  • Jin Park
  • Michael B Elowitz

DOE Biochronicity (DOE Biochronicity)

  • Adam Z Rosenthal
  • Yutao Qi
  • Jin Park
  • Sophia Hsin-Jung Li

Center for Environmental Microbial Interactions at Caltech

  • Adam Z Rosenthal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martin Ackermann, Reviewing Editor, ETH Zurich, Switzerland

Publication history

  1. Received: October 25, 2017
  2. Accepted: May 21, 2018
  3. Accepted Manuscript published: May 29, 2018 (version 1)

Copyright

© 2018, Rosenthal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 954
    Page views
  • 234
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Miriam Bracha Ginzberg et al.
    Research Article
    1. Computational and Systems Biology
    2. Plant Biology
    Peter D Gould et al.
    Research Article Updated