Metabolism: Division of labor in bacteria
Why do we have so many different types of cells in our body? A plausible explanation is that a single cell can only perform a limited number of roles at the same time. As a consequence, our body consists of more than 200 clearly distinguishable types of cells (Heintzman et al., 2009).
But what about smaller life forms such as bacteria? These microbes often form communities of genetically identical, or clonal, cells that can collectively activate genes or regulate metabolic processes. It remains unclear, however, whether each single cell performs all the roles observed at the population level, or whether cells specialize on a subset of these functions. Although a division of labor has been suspected, evidence remains scant (Nikolic et al., 2013; de Lorenzo et al., 2015; Ackermann, 2015). Now, in eLife, Michael Elowitz of the California Institute of Technology and colleagues – including Adam Rosenthal as first author – report how a clonal population of Bacillus subtilis bacteria divides into two subpopulations with distinct roles (Rosenthal et al., 2018).
The two groups of bacteria likely arose from a phenomenon known as stochastic gene expression. This happens when the randomness associated with the transcription and translation of genes is amplified by the cell’s regulatory network, and results in cells with identical genomes having different traits or phenotypes (Elowitz et al., 2002). While many cases of stochastic gene expression have been described in the last decade, two aspects set this study apart from previous work (Kaern et al., 2005): first, the two subpopulations engaged in metabolic interactions; second, the composition of the population changed dynamically over time (Figure 1).
Rosenthal et al. – who are based at Caltech and Princeton University – grew several populations of B. subtilis on two sugars, glucose and malate, and observed that some bacteria did not metabolize these sugars completely, but instead began secreting acetate, a metabolic intermediate. Secreting acetate can help bacteria to grow more quickly, but it can also accumulate to toxic levels (Pfeiffer et al., 2001). The researchers found that this toxicity was remediated by a small subpopulation of bacteria that started to convert acetate to acetoin, which is harmless, thus enabling the population to grow in a detoxified environment. These acetate-consuming cells only emerged after the acetate-producing cells arose, as a direct response to the accumulating toxicity. This demonstrates that individual cells in a population of genetically identical bacteria can activate alternative metabolic pathways that affect the population as a whole.
The study of Rosenthal et al. raises an intriguing question: does a metabolic division of labor happen often in clonal populations of bacteria? There are reasons to assume that it would be beneficial and therefore potentially widespread. For example, recent studies suggest that bacteria can divide up to 20% faster if they trade certain cellular 'building blocks' with other bacterial species, instead of producing them on their own (Pande et al., 2014). Thus, one might expect the cells in clonal populations to differentiate and specialize in order to make the most of their labor. Moreover, bacterial communities often live on surfaces, where they can reach high densities (Hall-Stoodley et al., 2004). Such conditions could favor metabolic differentiation and the division of labor.
Microbes play crucial roles in our lives, from cycling elements on our planet to shaping health and disease. If metabolic division of labor is widespread in bacterial populations, this finding could have a profound impact on biology. In fact, many widely-studied metabolic pathways in bacteria could actually be the result of a group effort that no single cell could perform alone.
Although the degree of cell differentiation in the human body most likely exceeds that in bacterial populations, these two systems may nevertheless share an interesting feature. In both cases, the properties of the system emerge from interactions between cells that are genetically identical but phenotypically different. It is intriguing to think that these two very different life forms may have found a common solution to a general problem: if a single cell cannot perform more than a certain number of roles, a collection of cells can organize itself to ensure that all functions are still accomplished.
References
-
A functional perspective on phenotypic heterogeneity in microorganismsNature Reviews Microbiology 13:497–508.https://doi.org/10.1038/nrmicro3491
-
Chemical reactivity drives spatiotemporal organisation of bacterial metabolismFEMS Microbiology Reviews 39:1–29.https://doi.org/10.1111/1574-6976.12089
-
Stochastic gene expression in a single cellScience 297:1183–1186.https://doi.org/10.1126/science.1070919
-
Bacterial biofilms: from the natural environment to infectious diseasesNature Reviews Microbiology 2:95–108.https://doi.org/10.1038/nrmicro821
-
Stochasticity in gene expression: from theories to phenotypesNature Reviews Genetics 6:451–464.https://doi.org/10.1038/nrg1615
Article and author information
Author details
Publication history
Copyright
© 2018, Dal Co et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,796
- views
-
- 502
- downloads
-
- 8
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17β-estradiol (E2) reduces peptide expression but increases Slc17a6 (Vglut2) mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current that contributes to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of canonical transient receptor potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When Trpc5 channels in Kiss1ARH neurons were deleted using CRISPR/SaCas9, the slow excitatory postsynaptic potential was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of Kiss1ARH neurons, suggesting that E2 modifies ionic conductances in these neurons, enabling the transition from high-frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.
-
- Computational and Systems Biology
Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study bias affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.