Metabolism: Division of labor in bacteria

The emergence of subpopulations that perform distinct metabolic roles has been observed in populations of genetically identical bacteria.
  1. Alma Dal Co  Is a corresponding author
  2. Charlotte Brannon  Is a corresponding author
  3. Martin Ackermann  Is a corresponding author
  1. ETH Zurich, Switzerland
  2. Eawag, Switzerland
  3. Yale University, United States

Why do we have so many different types of cells in our body? A plausible explanation is that a single cell can only perform a limited number of roles at the same time. As a consequence, our body consists of more than 200 clearly distinguishable types of cells (Heintzman et al., 2009).

But what about smaller life forms such as bacteria? These microbes often form communities of genetically identical, or clonal, cells that can collectively activate genes or regulate metabolic processes. It remains unclear, however, whether each single cell performs all the roles observed at the population level, or whether cells specialize on a subset of these functions. Although a division of labor has been suspected, evidence remains scant (Nikolic et al., 2013; de Lorenzo et al., 2015; Ackermann, 2015). Now, in eLife, Michael Elowitz of the California Institute of Technology and colleagues – including Adam Rosenthal as first author – report how a clonal population of Bacillus subtilis bacteria divides into two subpopulations with distinct roles (Rosenthal et al., 2018).

The two groups of bacteria likely arose from a phenomenon known as stochastic gene expression. This happens when the randomness associated with the transcription and translation of genes is amplified by the cell’s regulatory network, and results in cells with identical genomes having different traits or phenotypes (Elowitz et al., 2002). While many cases of stochastic gene expression have been described in the last decade, two aspects set this study apart from previous work (Kaern et al., 2005): first, the two subpopulations engaged in metabolic interactions; second, the composition of the population changed dynamically over time (Figure 1).

Distinct metabolic pathways in a population of bacteria.

Schematic showing the two subpopulations of B. subtilis seen in the experiments of Rosenthal et al. At the start of the experiment (left) an individual bacterium (grey) grown on glucose and malate divides to give rise to a clonal population. After three hours, some of the cells (shown in red) start to secrete acetate (purple shadow). After six hours, acetate has accumulated to a toxic level, and a second phenotypic subpopulation emerges: the bacteria in this second subpopulation (green) take up the acetate and convert it to acetoin, which is nontoxic. After nine hours, acetate has dropped to a level that is non-toxic.

Rosenthal et al. – who are based at Caltech and Princeton University – grew several populations of B. subtilis on two sugars, glucose and malate, and observed that some bacteria did not metabolize these sugars completely, but instead began secreting acetate, a metabolic intermediate. Secreting acetate can help bacteria to grow more quickly, but it can also accumulate to toxic levels (Pfeiffer et al., 2001). The researchers found that this toxicity was remediated by a small subpopulation of bacteria that started to convert acetate to acetoin, which is harmless, thus enabling the population to grow in a detoxified environment. These acetate-consuming cells only emerged after the acetate-producing cells arose, as a direct response to the accumulating toxicity. This demonstrates that individual cells in a population of genetically identical bacteria can activate alternative metabolic pathways that affect the population as a whole.

The study of Rosenthal et al. raises an intriguing question: does a metabolic division of labor happen often in clonal populations of bacteria? There are reasons to assume that it would be beneficial and therefore potentially widespread. For example, recent studies suggest that bacteria can divide up to 20% faster if they trade certain cellular 'building blocks' with other bacterial species, instead of producing them on their own (Pande et al., 2014). Thus, one might expect the cells in clonal populations to differentiate and specialize in order to make the most of their labor. Moreover, bacterial communities often live on surfaces, where they can reach high densities (Hall-Stoodley et al., 2004). Such conditions could favor metabolic differentiation and the division of labor.

Microbes play crucial roles in our lives, from cycling elements on our planet to shaping health and disease. If metabolic division of labor is widespread in bacterial populations, this finding could have a profound impact on biology. In fact, many widely-studied metabolic pathways in bacteria could actually be the result of a group effort that no single cell could perform alone.

Although the degree of cell differentiation in the human body most likely exceeds that in bacterial populations, these two systems may nevertheless share an interesting feature. In both cases, the properties of the system emerge from interactions between cells that are genetically identical but phenotypically different. It is intriguing to think that these two very different life forms may have found a common solution to a general problem: if a single cell cannot perform more than a certain number of roles, a collection of cells can organize itself to ensure that all functions are still accomplished.

References

Article and author information

Author details

  1. Alma Dal Co

    Alma Dal Co is in the Department of Environmental Systems Sciences, ETH Zurich and the Department of Environmental Microbiology, Eawag, Zurich, Switzerland

    For correspondence
    alma.dalco@usys.ethz.ch
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8816-7670
  2. Charlotte Brannon

    Charlotte Brannon is in the Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States

    For correspondence
    charlotte.brannon@yale.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4390-2832
  3. Martin Ackermann

    Martin Ackermann is in the Department of Environmental Systems Sciences, ETH Zurich and the Department of Environmental Microbiology, Eawag, Zurich, Switzerland

    For correspondence
    martin.ackermann@env.ethz.ch
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0087-4819

Publication history

  1. Version of Record published: June 29, 2018 (version 1)

Copyright

© 2018, Dal Co et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,448
    Page views
  • 475
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alma Dal Co
  2. Charlotte Brannon
  3. Martin Ackermann
(2018)
Metabolism: Division of labor in bacteria
eLife 7:e38578.
https://doi.org/10.7554/eLife.38578
  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Serkan Sayin, Brittany Rosener ... Amir Mitchell
    Research Advance

    Drug metabolism by the microbiome can influence anti-cancer treatment success. We previously suggested that chemotherapies with antimicrobial activity can select for adaptations in bacterial drug metabolism that can inadvertently influence the host's chemoresistance. We demonstrated that evolved resistance against fluoropyrimidine chemotherapy lowered its efficacy in worms feeding on drug-evolved bacteria (Rosener et al., 2020). Here we examine a model system that captures local interactions that can occur in the tumor microenvironment. Gammaproteobacteria colonizing pancreatic tumors can degrade the nucleoside-analog chemotherapy gemcitabine and, in doing so, can increase the tumor's chemoresistance. Using a genetic screen in Escherichia coli, we mapped all loss-of-function mutations conferring gemcitabine resistance. Surprisingly, we infer that one third of top resistance mutations increase or decrease bacterial drug breakdown and therefore can either lower or raise the gemcitabine load in the local environment. Experiments in three E. coli strains revealed that evolved adaptation converged to inactivation of the nucleoside permease NupC, an adaptation that increased the drug burden on co-cultured cancer cells. The two studies provide complementary insights on the potential impact of microbiome adaptation to chemotherapy by showing that bacteria-drug interactions can have local and systemic influence on drug activity.

    1. Computational and Systems Biology
    2. Neuroscience
    Andrew McKinney, Ming Hu ... Xiaolong Jiang
    Research Article

    The locus coeruleus (LC) houses the vast majority of noradrenergic neurons in the brain and regulates many fundamental functions including fight and flight response, attention control, and sleep/wake cycles. While efferent projections of the LC have been extensively investigated, little is known about its local circuit organization. Here, we performed large-scale multi-patch recordings of noradrenergic neurons in adult mouse LC to profile their morpho-electric properties while simultaneously examining their interactions. LC noradrenergic neurons are diverse and could be classified into two major morpho-electric types. While fast excitatory synaptic transmission among LC noradrenergic neurons was not observed in our preparation, these mature LC neurons connected via gap junction at a rate similar to their early developmental stage and comparable to other brain regions. Most electrical connections form between dendrites and are restricted to narrowly spaced pairs or small clusters of neurons of the same type. In addition, more than two electrically coupled cell pairs were often identified across a cohort of neurons from individual multi-cell recording sets that followed a chain-like organizational pattern. The assembly of LC noradrenergic neurons thus follows a spatial and cell type-specific wiring principle that may be imposed by a unique chain-like rule.